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Chapter 1

Running FORM

The proper way to invoke the running of FORM depends on the operating system that is being
used. Here we will consider the UNIX operating system and its derivatives. The version for
computers with the Windows operating system use Cygwin, which is a UNIX derivative as well
and hence it functions similarly. In all cases a proper call of FORM is

form [options] inputfile

The input file should have a name that ends in the extension .frm. It is however not needed to
specify this extension. If this extension is absent, FORM will add it. Example:

form myformprogram

and FORM will look for the file myformprogram.frm. It is also possible to use the standard input
as the input, rather than a file, by giving - for the inputfile (which is currently not supported by
ParFORM, though). The options are separated by blanks and start with a minus sign, followed
by one or more alphabetic characters. They are:

-c Error checking only. Notice that this will not work properly if there are conditionals in the
preprocessor phase that depend on results obtained at earlier stages of the program.

-C Next argument/option is a custom filename for the log file.

-d Next argument/option is the name of a preprocessor variable that will be defined before the
run starts. A specific value can be assigned with the syntax -d VARIABLENAME=VALUE. The
default value is 1.

-D Same as -d.

-f Output goes only to log file.

-F Output only to log file. Further like -L or -ll.

-h Wait for some key to be touched before finishing the run. Basically only for some old window
based systems.

-I Next argument/option is the path of a directory for include, procedure and subroutine files.

-l Make a regular log file.

-ll Make a log file without intermediate statistics.
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-L Same as -ll.

-M This option is ignored. The PID (process identifier) of the process is now always included in
the name of the temporary files.

-p Next argument/option is the path of a directory for input, include, procedure and subroutine
files.

-pipe Indicates that FORM is started up as the receiving end of a pipe. Action will be taken to
set up the proper communication channels.

-q Quiet option. Only output expressions are printed.

-R Recover from a crash. See the checkpoint mechanism in 4.1.

-s Next argument/option is the path of a directory for a setup file.

-si Same as -q.

-S Next argument/option is the name of a setup file.

-t Next argument/option is the path of a directory for temporary files.

-ts Next argument/option is the path of a directory for temporary sort files.

-T Puts FORM in a mode in which the maximum totalsize is measured and printed at the end of
the program. For more information see the ”On TotalSize;” statement 7.110.

-v Only the version will be printed. The program terminates immediately after it.

-w This should be followed immediately by a number. The number indicates the number of worker
threads for TFORM. All other versions of FORM ignore this parameter. It should be noted
that TFORM is a different program. For more information, please consult chapter 18.

-W Turn on the wall-clock time mode in the statistics. See the ‘On wtimestats’ statement 7.110.

-y Run only the preprocessor and dump its output.

-z The number following is a timelimit for the program in second.

-Z Removes the .str file on crash, whatever its contents. Under ordinary circumstances at a crash
a .str file will not be removed if it has a nonzero content.

The log file is a file in which all output is collected, even when the output appears on the screen
already. This makes it possible to follow the progress of the program and have a record of everything
at the same time. The default name of the log file is identical to the name of the program without
the extension .frm but with the extra extension .log. Example:

form -t /LocalDisk/mydir -l myformprogram

FORM will run the program in the file myformprogram.frm. Its output will both be written to
the screen and into the file myformprogram.log. The temporary files (if any) will be made in
the directory /LocalDisk/mydir. This last feature is very useful, because writing temporary files
across a network can sometimes slow things down considerably.

The second way to pass parameters to FORM during startup is by means of environment
variables, assuming of course that the system supports them. The following variables are supported:
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FORMPATH The directory in which FORM will look for procedures and header files, assuming
it cannot find them in the current directory.

FORMTMP The directory in which FORM will make its temporary files.

FORMTMPSORT The directory in which FORM will make its temporary sort files.

FORMSETUP The full path and name of a setup file.

It should be noted that when a parameter is specified both in the command tail and in the envi-
ronment the value of the command tail will be used.

The third way to pass parameters at startup is by means of a setup file. One of the first things
FORM does is to locate such a startup file. The procedure that is being followed for this is:

� If the command tail specifies a setup file, FORM will use this file, ignoring all other indications
with respect to the setup file. This assumes of course that this file exists. If it does not exist
FORM passes on to the next option.

� If the command tail specifies a path for the setup file, FORM will try to open the file
”form.set” in this directory. If this cannot be done (by lack of rights or because the file does
not exist) FORM passes on to the next option.

� Next FORM tries to open the file ”form.set” in the current directory.

� If all else fails, FORM will look for the environment parameter FORMSETUP and use its
value as the name of a setup file.

If all the above attempts fail, FORM will not use a setup file. For more information about the
setup file one should consult the corresponding chapter on page 17.
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Chapter 2

Variables

The objects of symbolic manipulations are expressions. Expressions are built up from terms and
terms are composed of variables. FORM knows several types of variables, each of which has
special rules assigned to it. The types of variables are symbols, vectors, indices, functions, sets,
and expressions. In addition there are tensors and tables which are special functions, preprocessor
variables (see chapter 3), and there are dollar variables (see chapter 6). The expressions are used
either in the definition of an expression or in the right hand side of an expression or a substitution.
When an expression is used in the right hand side of another expression or a substitution, it will
be replaced by its contents at the first opportunity. Therefore an expression will never occur as
a variable in the output of other expressions and we will ignore their potential presence in the
remainder of this chapter. Similarly preprocessor variables and dollar variables will be replaced
immediately when they are encountered.

The right hand side of an expression can consist of symbols, vectors, indices, functions and
elements of a set. All these objects have to be declared before they can be used. The rules
connected to each of these types of variables are described in the sections below.

2.1 Names

There are two types of names. Regular names consist of alphabetic and numeric characters with
the condition that the first character must be alphabetic. FORM is case sensitive with respect to
names. In addition there are formal names. These names start with the character [ and end
with a matching character ]. In between there can be any characters that are not intercepted by
the preprocessor. This allows the use of variables like [x+a]. Using formal names can improve
the readability of programs very much, while at the same time giving the user the benefits of the
greater speed. The use of denominators that are composite (like 1/(x+a)) is usually rather costly
in time. Often 1/[x+a] is equally readable, while leading to the same results. Note however that
the variable [x+a] will have to be declared properly. On the other hand: FORM may not have to
know about x and a. These formal names can also be used for the names of expressions, but they
are not valid for the names of dollar variables and the names of preprocessor variables.

Some names may contain special characters. All built in objects have for their last character
an underscore ( ). Dotproducts (the scalar product of two vectors) consist of two vectors separated
either by a period or by a dollar sign. The dollar sign is used by FORM, when the output of
the program has to be Fortran compatible. The user can replace the dollar sign in the output
by an arbitrary character by defining the variable ”DotChar” in the setup file. How this is done
is explained in chapter 17. In the input the user may apply either the notation with the period
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or the notation with the dollar. It is however recommended to use the period because in future
versions the notation with the dollar may be dropped. The above conventions avoid the possibility
of conflicts with reserved names, allowing the user full freedom when choosing names.

The dollar sign is also used as the first character in the name of dollar variables. The rest of
the name should consist of alphanumeric characters of which the first should be alphabetic. The
names of preprocessor variables should also consist of alphanumeric characters of which the first
should be alphabetic. Also here the ones that are defined by the system have a trailing underscore
( ) character.

With respect to the user defined names FORM is case sensitive. This means that the variables
a and A are different objects. With respect to system defined objects FORM is case insensitive.
Hence both d and D indicate the same Kronecker delta.

In many languages the use of the underscore ( ) character is also permitted in the definition of
user defined names. In FORM this is NOT the case. Even though the earlier manuals ‘forbade’
this specifically there was a bug in earlier versions that permitted it to some degree. And because
people don’t read manuals, there were those who used this character and even made it into a vital
part of their naming conventions. This then broke when version 3 was introduced. It should be
clear though that the underscore character is reserved for a completely different type of future
use and hence nothing can be done about this. Just remember: it is never a good idea to use
undocumented features without consulting with the development team first.

The complex conjugate of a complex quantity is indicated by the character # appended to the
name of the variable. In the current version of FORM not much is done with it. The latest
approach is that it is seen as obsolete. If possible, please avoid using it.

The length of names is not restricted in FORM. There is one exception to this rule: names of
expressions cannot be longer than 16 characters. Of course in practise there are physical limits on
the size of names, posed by the size of the memory of the computer being used.

2.2 Symbols

Symbols are plain objects that behave most like normal variables in hand manipulations. Many
hand manipulations concern polynomial formulae of simple algebraic variables. FORM assumes
that symbols commute with all other objects and have a power connected to them. This power is
limited to an installation dependent maximum and minimum. A power outside this range will lead
to an error message. The user may override this built in restriction by one of private design that
is more restrictive. Any power that falls outside the user defined range leads to the removal of the
term that contains the variable with this power. Such a power restriction can be defined for each
symbol separately.

Symbols can also have complex conjugation properties. A symbol can be declared to be real,
imaginary or complex. This property is only relevant, when the complex conjugation operator is
used. This operator has not been implemented and currently there are no plans to do so.

The syntax of the statement that defines symbols is given by (see also 7.144):

S[ymbols] name[#{R|I|C}][(min:max)];

Each variable is declared by the presence of its name in a symbol-statement. If the # symbol is
appended, it should be followed by either the character C, I or R to indicate whether the variable
is complex, imaginary or real. The #R is not really necessary, as the type ‘real’ is the default. It is
not relevant whether the C, I, R are in upper or in lower case. A power restriction is indicated with
a range between regular parentheses. If one of the two numbers is not present, the default value is
taken. This default value is installation dependent, but it is at least -10000 and 10000 respectively.

5



Each symbol-statement can define more than one variable. In that case the variables have to be
separated either by comma’s or by blanks. Example:

S x,y,z,a#c,b#c,c#c,r(-5:5),s(:20),t#i(6:9);

In this statement x, y and z are normal real algebraic variables. The variables a, b and c are
complex. This means that for each of these variables two entries are reserved in the property lists:
one for the variable and one for its complex conjugate. The variable r has a power restriction: Any
power outside the specified range will cause the term containing this power to be eliminated. This
is particularly useful in power series expansions. The restrictions on s are such that there is no
limitation on the minimum power of s –with the exception of the built in restrictions– but a term
with a power of s that is larger than 20 is eliminated. The variable t is imaginary. This means that
under complex conjugation it changes sign. Its power restrictions are somewhat uncommon. Any
power outside the range 6 to 9 is eliminated. There is however one exception: a term that does not
contain t to any power (t0) is not affected.

s x(:10),y;

L F=y^7;

id y=x+x^2;

print;

.end

Time = 0.01 sec Generated terms = 4

F Terms in output = 4

Bytes used = 54

F =

x^7 + 7*x^8 + 21*x^9 + 35*x^10;

Note that all terms with a power greater than 10 do not even count as generated terms. They are
intercepted immediately after the replacement, before any possible additional statements can be
carried out.

There are several built in symbols. They are:
i : it is defined by i_^2 = -1 and this property is used by FORM to simplify terms. It is the only
symbol that cannot be used as a dimension or a wildcard.
pi : a reserved variable which indicates the constant π.
ee : a reserved variable which indicates the basis of the natural logarithm e.
em : a reserved variable which indicates the Euler-Mascheroni constant γE.
coeff : this variable is automatically replaced by the coefficient of the current term.
num : this variable is automatically replaced by the numerator of the coefficient of the current
term.
den : this variable is automatically replaced by the denominator of the coefficient of the current
term.
extrasymbols : this symbol represents the number of extra symbols (see 2.11).

2.3 Vectors

A vector is an object with a single index. This index represents a number that indicates which
component of the vector is meant. Vectors have a dimension connected to them which is the
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dimension of the vector space in which they are defined. In FORM this dimension is by default
set to 4. If the user likes to change this default, this can be done with the ‘Dimension’-statement.
The use of this command affects the dimension of all vectors and the default dimension of indices.
Its syntax is (see also 7.34):

Dimension number;

or

Dimension symbol;

The number must be a number that fits inside a FORM word which is an installation dependent
size, but it will be at least 32767. The number must be positive or zero. Negative values are illegal.
If a symbol is specified, it must have been declared before. Any symbol may be used with the
exception of i .

The declaration of vectors (see 7.165) is rather straightforward:

V[ector] name [,MoreNames];

The names of the vectors may be separated either by comma’s or by blanks. Example:

V p,q;

I mu,nu;

L F=p(mu)*q(nu);

2.4 Indices

Indices are objects that represent a number that is used as an integer argument for counting
purposes. They are used mostly as the arguments of vectors or multidimensional arrays (or tensors).
Their main property is that they have a dimension. This dimension indicates what values the index
can take. A four-dimensional index can usually take the values 1 to 4. A very important property
of an index is found in the convention that it is assumed that an index that is used twice in the
same term is summed over. This is called the Einstein summation convention. Hence the term
p(mu)∗q(mu) is equivalent to the scalar product of the vectors p and q (which can also be written
as p.q).

There are of course also indices that should not be summed over. Such indices we call zero-
dimensional. This is just a convention. To declare indices we use the statement (see also 7.76):

Index name[={number|symbol}]

[,othername[={number|symbol}]];

When the equals sign is used, this indicates the specification of a dimension. Indices that are not
followed by an equals sign get the dimension that is currently the default dimension (see also 7.34)).
The dimension can be either a number that is zero or positive (zero indicates that the summation
convention does not apply for this index) or it can be any symbol with the exception of the symbol
i . The symbol must have been declared before.

The most important use of the dimension of an index is the built in rule that a Kronecker delta
with twice the same index is replaced by the dimension of this index, provided this index has a
non-zero dimension. Therefore when mu is 4-dimensional, d (mu, mu) will be replaced by 4 and
when nu is n-dimensional, d (nu,nu) will be replaced by n. If rho is zero dimensional, the expression
d (rho,rho) is left untouched.
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In addition to the symbolic indices there is a number of fixed indices with a numeric value. The
values of these indices runs from zero to an installation dependent number (usually 127). Users
who like a different maximum value should consult chapter 17 about the setup parameters. The
numeric indices are all assumed to have dimension zero, hence no summation is applied to them.
This means that they can be used for vector components. It is therefore perfectly legal to use:

V p,q,r;

L F=p(1)*q(1)*r(1)+p(2)*q(2)*r(2);

When two numeric indices occur inside the same Kronecker delta, a value is substituted for this
delta. Normally this value is one, when the two indices are identical and zero, when they are
different. The value for the diagonal elements can be changed with the ‘FixIndex’-statement (see
also 7.61):

Fi[xIndex] number:value [,number:value];

This command assigns to d (number,number) the given value. This value must fit inside a single
FORM word. This means that this value can at least be in the range -32768 to +32767. For more
details on the size of a FORM word one should consult the installation manual.

In the case of summable indices the use of three times the same index in the same term would
cause problems. FORM will execute the contraction for the first pair it encounters, after which the
third index is left. In the case of four or more indices the pairing for the contractions depends on
the order in which the parts of the term are processed. Hence to the user the result may seem to be
quasi random. Nothing can be done about this and the user should guard against such ambiguous
notation.

There is a special version of the index declarations that is used for traces of gamma matrices
in n dimensions. If an index is declared with

Symbols n,epsilon;

Index m=n:epsilon;

its dimension will be n and it is assumed that epsilon can be used for (n− 4) during the taking of
the trace of a string of gamma matrices. It is also possible to use this notation in the dimension-
statement. See also chapter 14 on the gamma matrices.

2.5 Functions

There are two classes of functions: commuting functions which commute automatically with
all other objects, and non-commuting functions which do not necessarily commute with other
non-commuting functions. An object is declared to be a commuting function with the ‘cfunction’
command. Of this command the first two characters are mandatory, the others optional. An
object is declared to be a non-commuting function with the ‘function’ command. Here only the f is
mandatory. The declaration of a function knows one option. This option concerns the complexity
properties of the function. It is indicated by a # following the name, after which one of the
characters R, I, C specifies whether the function is real, imaginary or complex. The declaration
that a function is real is unnecessary as ‘real’ is the default property. Example:

CF fa,fb,fc;

F ga,gb,gc#c;
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In this example the functions fa, fb, fc are commuting and the functions ga, gb and gc are not
necessarily commuting. In addition the function gc is complex. More about functions and their
conventions is explained in chapter 8.

Within the commutation classes there are several types of special functions. Currently these
are tensors and tables. The tables are described in section 7.146 and in chapter 12.

Tensors are special functions. Their arguments can be indices and vectors only. When an
argument is a vector, it is assumed that this vector has been put in this position as the result of an
Einstein summation, i.e., there used to be an index in this position, but the index was contracted
with the index of the vector. Hence FORM assumes that there is a linearity property with respect
to such vectors. Tensors are declared with one of the following statements (see also pages 7.148,
7.105, 7.28):

T[ensors] t1;

CT[ensors] t2;

NT[ensors] t3;

The type ‘ntensor’ indicates a non-commuting tensor, while the other two types indicate commut-
ing tensors. Note that the ’T’ is a commuting tensor, while the ’F’ indicates a non-commuting
function. In addition to the above declarations one may add the same complexity properties that
can be added for functions. This is currently not very useful though as there exists no complex
conjugation operator yet. Internally a tensor is a function with special properties. Hence when
function properties are discussed, usually these properties refer also to tensors, unless the type of
the arguments would not allow the operations or arguments specified.

2.6 Sets

A set is a (non-empty) collection of variables that should all be of the same type. This type can
be symbols, vectors, indices or functions. A set has a name which can be used to refer to it,
and this name may not coincide with any of the other names in the program. A set is declared
by giving its name, followed by a colon, after which the elements of the set are listed. The first
element determines the type of all the elements of the set. All elements must have been declared
as variables before the set-statement. There can be only one set per statement. Example (see also
7.132):

s xa, xb, xc, xd, ya, x, y;

i mu, nu, rho;

set exxes: xa, xb, xc, xd;

set yyy: xc, xd, xb, ya;

set indi: mu, nu, rho, 1, 2, 3;

set xandy: xa, ya;

We see here that a single symbol (xa) can belong to more than one set. Also the fixed indices
(1, 2 and 3) can be elements of a set of indices and the numbers that can be powers can also be
members of a set of symbols (usually -9999 to + 9999). If this can cause confusion, FORM will
give a warning and interpret the set as a set of symbols.

In addition to the user defined sets there are some built in sets with a special meaning. These
are:

int This is a set of symbols. It refers to all integer numbers that fit inside a FORM word.
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pos This is a set of symbols. They are the positive integers that fit inside a FORM word.

pos0 A set of symbols. They are all non-negative integers that fit inside a FORM word.

neg A set of symbols. They are all negative integers that fit inside a FORM word.

neg0 A set of symbols. They are all non-positive integers that fit inside a FORM word.

symbol The set of all formal symbols. It excludes integers, numbers and whole function argu-
ments.

fixed The set of all fixed indices.

index The set of all indices.

vector The set of all (auto)declared vectors.

number The set of all rational numbers.

even This is a set of symbols. It refers to all even integer numbers that fit inside a FORM word.

odd This is a set of symbols. It refers to all odd integer numbers that fit inside a FORM word.

dummyindices This is a set of indices. It refers to all indices of the type Nm ? (m a positive
integer) that were obtained by summing over indices with a sum statement 7.142.

Sets can be used during wildcarding. When x is a symbol, the notation x? indicates ‘any
symbol’. This is sometimes more than we want. In the case that we would like ‘any symbol that
belongs to the set exxes’ we would write x?exxes which is an unique notation as usually the question
mark cannot be followed by a name. There should be no blank between the question mark and the
name of the set. The object x?indi would result in a type mismatch error, if x is a symbol and indi
a set of indices.

This use of wildcards belonging to sets can be extended even more: The notation x?exxes?yyy
means that x should belong to the set exxes, and its replacement should be the corresponding
element of set yyy. At first this notation looks unnecessarily complicated. The statement

id x?exxes?yyy = x;

should have the much simpler syntax

id exxes = yyy;

This last notation cannot be maintained, when the patterns are more complicated, hence it has
been omitted altogether.

When things become really complicated, the sets can be used as kind of an array. They can be
used with a fixed array index (running from 1 for the first element). When they have a symbolic
argument (must be a symbol), they are either in the right hand side of an id-statement and the
symbol must be replaced by a number by means of a wildcard substitution or in the left hand side
and the symbol is automatically seen as a wildcard. The set must still follow the question mark of
a wildcard. An example will clarify the above:
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s a1,a2,a3,b1,b2,b3,x,n;

f g1,g2,g3,g;

set aa:a1,a2,a3;

set bb:b1,b2,b3;

set gg:g1,g2,g3;

id g(x?aa[n]) = gg[n](bb[n]) + bb[2]*n;

The n in the left hand side is automatically a symbol wildcard. x must match an element in aa
and n takes its number. In the right hand side gg[n] becomes an array element, when the n is
substituted. The same holds for bb[n]. The element bb[2] is immediately replaced by b2, so there
is rarely profit by using this, unless the preprocessor had something to do with the construction of
this quantity. As should be clear from the above: the array elements are indicated with straight
braces.

Another use of sets is in the select option of the id-statement. This is discussed in chapter 5 on
pattern matching.

Neither the array properties of the sets nor the select option of the id-statement can be used in
conjunction with the built in sets. These sets are not supposed to have a finite number of indices.

Apart from the above sets that were formally declared and used by name there is a second way
to use sets. These sets are called implicitly declared sets. They are declared at the position
that they are used and their use defines their contents. The elements of the set should be enclosed
by a pair of curly brackets and the set is placed at the position where otherwise the name of the
set would be used:

Symbols a1,a2,a3,b1,b2,b3,x,n;

CFunctions g1,g2,g3,g;

Local expr =

g(a1)+g(a2)+g(a3)+g(x);

id,g(x?{a1,a2,a3}[n]) = {g1,g2,g3}[n]({b1,b2,b3}[n]);

print;

.end

expr =

g1(b1) + g2(b2) + g3(b3) + g(x);

Such a set exists internally only till the end of the module in which it is used. It can be used at all
positions where named sets can be used. Hence they can also be used, when the array properties
of sets are considered.

The preprocessor has to be able to distinguish these sets from strings for its calculator (see
chapter 3). Usually this is no problem, because any regular name contains at least one character
that is not accepted by this calculator. If the only elements in the set are numeric the comma will
tell the preprocessor that it is a set and the calculator should not be used. This leaves the case of
a set with a single numeric element. By placing a comma either before or after it the use of the
calculator is vetoed. For the interpretation of the set this makes no difference.

When it is possible to demand an object to be inside a set, it should also be possible to demand
that an object be outside a set. This is done with the ‘?!’ operator instead of the ‘?’ operator.
The extra exclamation mark is like a ‘not’ operator. It can be used only, when its use makes sense.
Hence it cannot be used in conjunction with the array properties of sets and together with the
select option of the id-statement. So its only use is in patterns of the type
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x?!setname

x?!{a,b,c}

as is done in

id x^n?!{,-1} = x^(n+1)/(n+1);

There is a variation of the second type that is not possible with named sets:

Symbols a,b,x,y,z;

CFunction f;

id f(x?!{a,y?,z?})*f(y?!{b,x?,z?})*f(z?!{x?,y?})

= .........

In this complicated pattern the z is easiest: It is not allowed to be equal to the objects that will be
substituted for the wildcards x and y. The symbol x cannot be equal to the wildcards y and z, but
in addition it should not be equal to a. A similar condition holds for y. One could argue that at
least one of these conditions is superfluous from the strictly logical viewpoint. It depends however
on the order of the declarations in how FORM runs through the pattern, so it would require some
trying to see which ‘not’ specifications are superfluous. If for instance the first function is matched
first, there is still no assignment for z. This means that the z? in the set cannot be used yet and
hence it places no restrictions on x. Therefore it is the x? in the last function that causes x and
z to be different. If on the other hand the last function would be matched first, we need the z?
in the set of the first function. From the strict logical viewpoint, FORM could go back over the
pattern and still make the appropriate rejections, but this would cost too much extra time. As one
can see, it is safer to specify both.

2.7 The autodeclare conventions

As we have seen above, all variables that are introduced by the user have to be declared. As such
FORM is a strong typing language. This isn’t always handy. Hence it is possible to introduce some
rules about the automatic declaration of classes of variables. This is done with the AutoDeclare
statement (see also 7.10). If we use the statements

AutoDeclare Symbol x,tt;

AutoDeclare CFunction f,t;

any object encountered by the compiler of which the name starts with the character x will auto-
matically be declared as a symbol. Also objects of which the name starts with the characters tt will
be declared as symbols. Objects of which the name starts with the characters f or t, but not with
the string tt, and that have not yet been declared will be declared automatically as commuting
functions. As one can see, in the case of potential conflicts (like with t and tt) the more restrictive
one takes precedence. This is independent of the order of the AutoDeclare statements. One dis-
advantage of the use of the AutoDeclare statement is that one looses a certain amount of control
over the order of declaration of the variables, as now they will be declared in the order in which
they occur in the statements. The order of the declaration determines the ordering of the objects
in the output.
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2.8 Name lists

Sometimes it is necessary to see how FORM has interpreted a set of declarations. It can also
be that declarations were made in an unlisted include file and that the user wants to know what
variables have been defined. The lists of active variables can be printed with the statement

On names;

This statement sets a flag that causes the listing of all name tables and default properties that are
active at the moment that the compiler has finished compiling the current module and all modules
after. The printing is just before the algebra processor takes over for the execution of the module
– assuming that no error condition exists. If the ‘On names’ is specified in a module that ends
with a .global-instruction, the name lists will be printed at the end of each module, as printing the
name lists will then be the default option. If one likes to switch this flag off, this can be done with
the statement

Off names;

which prohibits the printing of the name lists in the current module and all modules following.

2.9 Dummy indices

Sometimes indices are to be summed over but due to the evaluation procedures some terms contain
the index mu and other terms contain the index nu. There is a command to sum over indices
in such a way that FORM recognizes that the exact name of the index is irrelevant. This is the
‘sum’-statement (see also 7.142):

i mu,nu;

f f1,f2;

L F=f1(mu)*f2(mu)+f1(nu)*f2(nu);

sum mu;

sum nu;

print;

.end

At first the expression contains two terms. After the summations FORM recognizes the terms as
identical. In the output we see the term:

2*f1(N1_?)*f2(N1_?)

The N1_? are dummy indices. The dimension of these dummy indices is the current default dimen-
sion as set with the last dimension-statement. This may look like it is a restriction, but in practice
it is possible to declare the default dimension to have one value in one module, take some sums, and
do some more operations, and then give the default dimension another value in the next module.
It should be realized however that then the dimension of the already existing dummy indices may
change with it.

The scheme that is used to renumber the indices in a term is quite involved. It will catch nearly
all possibilities, but in order to avoid to try all n! permutations, when there are n pairs of dummy
indices, FORM does not try everything. It is possible to come up with examples in which the
scheme is not perfect. It is left as a challenge for the reader to find such an example. In the case
that the scheme isn’t sufficient one can use the Renumber statement (see 7.127) to force a complete
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renumbering. As this involves n! attempts in which n is the number of different dummy indices,
this can become time consuming.

These dummy indices can be used to solve a well known problem in the automatic summation
of indices. This problem occurs, when summed indices are found inside a subexpression that is
raised to a power:

Index mu,nu;

CFunctions f,g;

Vectors p,q;

Local F = (f(mu)*g(mu))^2;

sum mu;

id f(nu?) = p(nu);

id g(nu?) = q(nu);

print;

.end

F =

p.p*q.q;

Clearly the answer is not what we had in mind, when we made the program. There is an easy way
out:

Index mu,nu;

Symbol x;

CFunctions f,g;

Vectors p,q;

Local F = x^2;

repeat;

id,once,x = f(mu)*g(mu);

sum mu;

endrepeat;

id f(nu?) = p(nu);

id g(nu?) = q(nu);

print;

.end

F =

p.q^2;

This time things went better, because each sum-statement moves an index mu to a new dummy
index.

There are some extra problems connected to dummy indices. Assume that we have the expres-
sion F which contains

F = f(N1_?,N2_?)*f(N2_?,N1_?);

and next we have the module

Indices mu,nu,rho,si;

Vectors p1,p2,p3,v;

Tensor g;
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Local G = e_(mu,nu,rho,si)*g(mu,nu,p1,v)*g(rho,si,p2,v);

sum mu,nu,rho,si;

Multiply F^3;

id v = e_(p1,p2,p3,?);

print;

.end

G =

f(N1_?,N2_?)*f(N2_?,N1_?)*f(N3_?,N4_?)*f(N4_?,N3_?)*

f(N5_?,N6_?)*f(N6_?,N5_?)*g(N7_?,N8_?,p1,N9_?)*

g(N10_?,N11_?,p2,N12_?)*e_(p1,p2,p3,N9_?)*

e_(p1,p2,p3,N12_?)*e_(N7_?,N8_?,N10_?,N11_?);

Here the situation with the dummy indices becomes rather messy, and all earlier versions of FORM
were not prepared for this. Their answer could be:

G =

f(N1_?,N2_?)*f(N1_?,N2_?)*f(N1_?,N2_?)*f(N2_?,N1_?)*

f(N2_?,N1_?)*f(N2_?,N1_?)*g(N1_?,N2_?,p2,N3_?)*

g(N4_?,N5_?,p1,N6_?)*e_(p1,p2,p3,N3_?)*

e_(p1,p2,p3,N6_?)*e_(N1_?,N2_?,N4_?,N5_?);

which is clearly not what the program is supposed to give. In the current version we have made
the tracing of the dummy indices and the renumbering of them at the proper moment a lot better.
It is however not complete as a complete implementation might severely influence the speed of
execution at some points. The scheme is complete for the inclusion of local and global expressions.
On the other hand it doesn’t work for the contents of dollar variables. Neither does it work for
dummy indices introduced in user defined code as in

id x^n? = (f(N1_?)*g(N1_?))^n;

For the latter case we showed a workaround above. Anyway there is a certain ambiguity here. Just
imagine we write

id x^n? = f(N1_?)^n*g(N1_?)^n;

Formally it is exactly the same, but what we mean is far from clear. For the dollar variables we con-
sidered the contracted dummy indices rare enough that it doesn’t merit sacrificing speed. And then
there is one more little caveat. Global expressions that were stored with older versions of FORM
than version 3.2, but are read with version 3.2 or later would have a problem if the expression were
to contain dummy indices. The newer version of the .sav files will contain information about the
dummy indices. FORM can still read the old versions but will have to ‘invent’ information by
assuming that there are no dummy indices. If there are expressions with such dummy indices the
best is to copy the expressions to a new expression and let the copying be followed by a .sort. That
should set things straight. A final remark: if an elegant solution is found with which the above
cases could be made to work without the penalty in execution time, it will be built in in the future.

One must also take care when working with extra symbols when processing expressions which
contain dummy indices. Dummy indices which are inside the extra symbol definitions are not
visible to FORM’s renumbering routines, which can lead to ambiguous results. For example:
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CFunction f,g;

Index mu;

Local test = f(mu,mu)*g(N1_?,N1_?);

ArgToExtraSymbol g;

Sum mu;

Argument g;

FromPolynomial;

EndArgument;

Print;

.end

test =

f(N1_?,N1_?)*g(N1_?,N1_?);

2.10 Kronecker delta’s

The built in object d represents the Kronecker delta. Even though this object looks a little bit
like a tensor, internally it isn’t treated as such. Actually it has its own data type. It must have
exactly two arguments and these arguments should be either indices or vectors. A d with at least
one vector is immediately replaced, either by a vector with an index (if there is one vector and one
index) or by a dotproduct (when there are two vectors). If a Kronecker delta contains an index
that occurs also at another position in the same term, and if that index is summable, and if the
index occurs as the index of a vector, inside a tensor, inside another d or as the argument of a
function, and the object inside which it occurs is not inside the argument of a function itself (unless
the d is inside the same argument) then the Einstein summation convention is used and the d
is eliminated, while the second occurrence of the index is replaced by the other index in the d
(Are you still with us?). When a Kronecker delta has two identical indices and these indices are
summable, the d is replaced by the dimension of the index. If they are fixed indices, the d is
replaced by one, unless this value has been altered with the fixindex-statement. Some examples of
Kronecker delta’s are given in section 8.7.

2.11 Extra Symbols

Starting with version 4.0 FORM is equipped with a mechanism to replace non-symbol objects
by internally generated symbols. These are called the extra symbols. Their numbering starts at
maximum number allowed for internal objects and then counts down. Hence their ordering will be
opposite to what might otherwise be expected. It is possible to control their representation when
they are to be printed in the output. For this there is the ExtraSymbols (7.55) statement. The
definitions of the extra symbols can be made visible with the %X option in the #write preprocessor
instruction.

Extra symbols can be introduced by the user with the ToPolynomial statement (7.153). This
statement replaces all objects that are not numbers or symbols to positive powers by extra symbols.
This may be needed for some new manipulations and can also be very handy for output that is to
be treated by for instance a FORTRAN or C compiler. The FromPolynomial statement replaces
the extra symbols again by their original meaning. Care should be taken if extra symbol definitions
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include dummy indices, see 2.9.

Vector p,q,p1,p2;

CFunction f;

CFunction Dot,InvDot;

Symbol x,x1,x2;

Set pdot:p,q;

Off Statistics;

Local F = x+x^2+1/x+1/x^2+f(x1)+f(x2)*p.q*x+f(x2)/p.q^2;

id p1?pdot.p2?pdot = Dot(p1,p2);

id 1/p1?pdot.p2?pdot = InvDot(p1,p2);

Print;

.sort

F =

x^-2 + x^-1 + x + x^2 + f(x1) + f(x2)*Dot(p,q)*x + f(x2)*InvDot(p,q)^2;

ExtraSymbols,array,Y;

Format DOUBLEFORTRAN;

ToPolynomial;

Print;

.sort

F =

& Y(1) + Y(1)**2 + Y(2) + Y(5)**2*Y(3) + x + x*Y(4)*Y(3) + x**2

#write <sub.f> " SUBROUTINE sub(Y)"

#write <sub.f> "*"

#write <sub.f> "* Compute the extra symbols. Generated on ‘DATE_’"

#write <sub.f> "*"

#write <sub.f> " REAL*8 Y(‘EXTRASYMBOLS_’)"

#write <sub.f> " REAL*8 Dot,InvDot"

#write <sub.f> " Dot(p1,p2)=p1(1)*p2(1)-p1(2)*p2(2)-p1(3)*p2(3)\

-p1(4)*p2(4)"

#write <sub.f> " InvDot(p1,p2)=1.D0/(Dot(p1,p2))"

#write <sub.f> "*"

#write <sub.f> "* We still have to add definitions here."

#write <sub.f> "* And we have to import all the variables."

#write <sub.f> "*"

#write <sub.f> "%X"

#write <sub.f> "*"

#write <sub.f> " RETURN"

#write <sub.f> " END"

ExtraSymbols,underscore,Z;

Format Normal;

Format 80;

Print;

.end
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F =

Z1_ + Z1_^2 + Z2_ + Z5_^2*Z3_ + x + x*Z4_*Z3_ + x^2;

FromPolynomial;

Print;

.end

F =

x^-2 + x^-1 + x + x^2 + f(x1) + f(x2)*Dot(p,q)*x + f(x2)*InvDot(p,q)^2;

In the ExtraSymbols statement we say that we want the extra symbols to be presented as an array
with the name Y. The alternative is a set of symbols with names ending in an underscore, but
that would not make the FORTRAN compiler very happy. Then we convert the expression to
symbols. As one can see, everything got converted to elements of an array Y which are treated as
symbols. After we have written the file sub.f (notice that EXTRASYMBOLS is a built in symbol
indicating the number of extra symbols) we change the representation to the (default) notation
with an underscore and the character Z. The contents of the file sub.f are:

SUBROUTINE sub(Y)

*

* Compute the extra symbols. Generated on Sat Apr 2 20:40:33 2011

*

REAL*8 Y(5)

REAL*8 Dot,InvDot

Dot(p1,p2)=p1(1)*p2(1)-p1(2)*p2(2)-p1(3)*p2(3)-p1(4)*p2(4)

InvDot(p1,p2)=1.D0/(Dot(p1,p2))

*

* We still have to add definitions here.

* And we have to import all the variables.

*

Y(1)=x**(-1)

Y(2)=f(x1)

Y(3)=f(x2)

Y(4)=Dot(p,q)

Y(5)=InvDot(p,q)

*

RETURN

END

As one can see, with very little effort this routine can be made into a proper subroutine that
computes all elements of the array Y which can then be used for computing the expression F.

2.12 Restrictions

There is a restriction on the total number of variables that FORM can handle. For the number
of symbols, vectors, indices, functions and sets together the exact number depends on the type
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of computer. For a computer with a 32-bits processor this number is 32768. This includes the
built in objects. Individual types of variables (like symbols) are usually restricted to about 8000.
For a computer with a 64-bits processor the maximum has been set arbitrarily at 2000000000. In
addition there are restrictions on the total amount of memory needed by FORM to maintain an
administration of all these variables. These restrictions are set by the memory allocator of the
computer on which FORM is running.

2.13 Some common bugs

There is a type of error by the user (including at times the author) that is so common that it
deserves mentioning here. Consider the code:

Symbol x1,x2

Index m1,m2;

As a statement it is perfectly legal, but it may produce rather funny errors at a later stage when we
try to use m1 or m2. Inspection with the ‘On names;’ statement shows that we have the symbols
x1,x2,Index,m1,m2. This is most likely not what the user wanted. Closer inspection shows that we
forgot the semicolon at the end of the symbol statement. We should have had:

Symbol x1,x2;

Index m1,m2;

This is the most common error for which FORM cannot give a direct error message (it is after all
a legal statement). Hence when faced with mysterious errors or error messages, one could have a
good look by using the ‘On names’ statement. Maybe it shows something, and if not, one has to
look for other causes.
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Chapter 3

The preprocessor

The preprocessor is a program segment that reads and edits the input, after which the processed
input is offered to the compiler part of FORM. When a module instruction is encountered by
the preprocessor, the compilation is halted and the module is executed. The compiler buffers are
cleared and FORM will continue with the next module. The preprocessor acts almost purely
on character strings. As such it does not know about the algebraic properties of the objects it
processes. Additionally the preprocessor also filters out the commentary.

The commands for the preprocessor are called instructions. Preprocessor instructions start with
the character # as the first non-blank character in a line. After this there are several possibilities.

#: Special syntax for setup parameters at the beginning of the program. See the chapter on the
setup parameters.

#−, #+ Turns the listing of the input off or on.

#name Preprocessor command. The syntax of the various commands will be discussed below.

#$name Giving a value to a dollar variable in the preprocessor. See chapter 6 on dollar variables.

3.1 The preprocessor variables

In order to help in the edit function the preprocessor is equipped with variables that can be defined
or redefined by the user or by other preprocessor actions. Preprocessor variables have regular
names that are composed of strings of alphanumeric characters of which the first one must be
alphabetic. When they are defined one just uses this name. When they are used the name should
be enclosed between a backquote and a quote as if these were some type of brackets. Hence ‘a2r’ is
the reference to a regular preprocessor variable. Preprocessor variables contain strings of characters.
No interpretation is given to these strings. The backquote/quote pairs can be nested. Hence ‘a‘i’r’
will result in the preprocessor variable ‘i’ to be substituted first. If this happens to be the string
”2”, the result after the first substitution would be ‘a2r’ and then FORM would look for its string
value.

The use of the backquotes is different from the earlier versions of FORM. There the preprocessor
variables would be enclosed in a pair of quotes and no nesting was possible. FORM still understands
this old notation because it does not lead to ambiguities. The user is however strongly advised to
use the new notation with the backquotes, because in future versions the old notation may not be
recognized any longer.
FORM has a number of built in preprocessor variables. They are:
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VERSION The current version as the 5 in 5.0.

SUBVERSION The sub-version as the 0 in 5.0.

NAME The name of the program file.

DATE The date of the current run.

CMODULE The number of the current module.

SHOWINPUT If input listing is on: 1, if off: 0.

EXTRASYMBOLS The current number of extra symbols (see 7.55).

OLDNUMEXTRASYMBOLS The number of extra symbols before the current optimization
started (see chapter 10).

OPTIMMINVAR The number of the first extra symbol needed for the current optimization
(see chapter 10).

OPTIMMAXVAR The number of the last extra symbol needed for the current optimization
(see chapter 10).

OPTIMSCHEME The best Horner scheme found for the current optimization (see chapter 10).

OPTIMVALUE The number of arithmetic operations in the resulting expression for the current
optimization (see chapter 10).

PID The process identifier (PID) of the running process. In ParFORM (18.2), it represents
the PID of the master process in order to ensure that all the processes in a job use the same
number. A recovered session from a checkpoint (4.1) keeps using the PID of the crushed
session.

STOPWATCH Same as ‘TIMER ’.

SYSTEMERROR The return value of the last #system3.62 command when invoked with the
-e option.

TIME The running time till the moment of call in the string format with a decimal point and
two digits after the decimal point. This is the same format as in the statistics.

TIMER The running time since the last reset in milliseconds. Hence, unlike ‘time ’ this value
can be used in the preprocessor calculator and in numerical compares in #if instructions. See
also the #reset (see 3.50) instruction.

NUMACTIVEEXPRS The number of the currently active expressions.

ACTIVEEXPRNAMES The list of the currently active expression names separated by com-
mas. This can be passed to #do lvar={...} instruction (3.20) like:

#do e = {‘activeexprnames_’}

#ifdef ‘e’

Local ‘e’ = ‘e’ + something;

#endif

#enddo
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UNCHANGED Takes the value 1 if all active expressions were unchanged in the previous
module, and 0 otherwise. ‘UNCHANGED exprname’ is 1 if the expression “exprname” was
unchanged in the previous module, and 0 otherwise.

ZERO Takes the value 1 if all active expressions were zero in the previous module, and 0 other-
wise. ‘ZERO exprname’ is 1 if the expression “exprname” was zero in the previous module,
and 0 otherwise.

If FORM cannot find a preprocessor variable, because it has neither been defined by the user, nor
is it one of the built in variables, it will look in the systems environment to see whether there is an
environment variable by that name. If this is the case its string value will be substituted.
Preprocessor variables can have arguments and thereby become macros. One should consult the
description of the #define 3.19 instruction about the delayed substitution feature to avoid the value
of the preprocessor variables in the macro would be substituted immediately during the definition.
Hence proper use is

#define EXCHANGE(x,y) "Multiply replace_(‘~x’,‘~y’,‘~y’,‘~x’);"

FORM has the following built in macros:

TOLOWER (string) in which the character string in the argument is converted to lower case.
After this it will become input.

TOUPPER (string) in which the character string in the argument is converted to upper case.
After this it will become input.

as well as macros which allow one to edit the names of variables,

KEEPLEFT (string,n) keep only the first n characters of string. After this it will become input.

KEEPRIGHT (string,n) keep only the last n characters of string. After this it will become
input.

TAKELEFT (string,n) remove the first n characters of string. After this it will become input.

TAKERIGHT (string,n) remove the last n characters of string. After this it will become input.

Note that these macro names are not case sensitive.

3.2 The preprocessor calculator

Sometimes a preprocessor variable should be interpreted as a number and some arithmetic should
be done with it. For this FORM is equipped with what is called the preprocessor calculator. When
the input reading device encounters a left curly bracket {, it will read till the matching right curly
bracket } and then test whether the characters (after substitution of preprocessor variables) can
be interpreted as a numerical expression. If it is not a valid numerical expression the whole string,
including the curly brackets, will be passed on to the later stages of the program. If it is a numerical
expression, it will be evaluated, and the whole string, including the curly brackets, will be replaced
by a textual representation of the result. Example:

Local F‘i’ = F{‘i’-1}+F{‘i’-2};

If the preprocessor variable i has the value 11, the calculator makes this into
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Local F11 = F10+F9;

Valid numerical expressions can contain the characters

0 1 2 3 4 5 6 7 8 9 + - * / % ( ) { } & | ^ !

The use of parentheses is as in regular arithmetic. The curly brackets fulfil the same role, as one
can nest these brackets of course. Operators are:

+ Regular addition.

− Regular subtraction.

∗ Regular multiplication.

/ Regular (integer) division.

% The remainder after (integer) division as in the language C.

& And operator. This is a bitwise operator.

| Or operator. This is a bitwise or.

∧ Exponent operator.

! Factorial. This is a postfix operator.

∧% A postfix 2log. This means that it takes the 2log of the object to the left of it.

∧/ A postfix square root. This means that it takes the square root of the object to the left of it.

Note that all arithmetic is done over the integers and that there is a finite range. On 32 bit systems
this range will be 231−1 to −231, while on 64 bit systems this will be 263−1 to −263. In particular
this means that {13^/} becomes 3. The preprocessor calculator is only meant for some simple
counting and organization of the program flow. Hence there is no large degree of sophistication.
Very important is that the comma character is not a legal character for the preprocessor calculator.
This can be used to avoid some problems. Suppose one needs to make a substitution of the type:

id f(x?!{0}) = 1/x;

in which the value zero should be excluded from the pattern matching (see dynamical sets in chapter
5 on pattern matching). This would not work, because the preprocessor would make this into

id f(x?!0) = 1/x;

which is illegal syntax. Hence the proper trick is to write

id f(x?!{,0}) = 1/x;

With the comma the preprocessor will leave this untouched, and hence now the set is passed
properly.

Good use of the preprocessor calculator can make life much easier for FORM. For example the
following statements

id f(‘i’) = 1/(‘i’+1);

id f(‘i’) = 1/{‘i’+1};
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are quite different in nature. In the first statement the compiler gets an expression with a composite
denominator. The compiler never tries to simplify expressions by doing algebra on them. Sometimes
this may not be optimal, but there are cases in which it would cause wrong results (in particular
when noncommuting and commuting functions are mixed and wildcards are used). Hence the
composite denominator has to be worked out during run time for each term separately. The second
statement has the preprocessor work out the sum and hence the compiler gets a simple fraction
and less time will be needed during running. Note that

id f(‘i’) = {1/(‘i’+1)};

would most likely not produce the desired result, because the preprocessor calculator works only
over the integers. Hence, unless i is equal to zero or -2, the result would be zero (excluding of
course the fatal error when i is equal to -1).

3.3 The triple dot operator

The last stage of the actions of the preprocessor involves the triple dot operator. It indicates a
repeated pattern as in a1+...+a4 which would expand into a1+a2+a3+a4. This operator is used
in two different ways. First the most general way:

<pattern1>operator1...operator2<pattern2>

in which the less than and greater than signs serve as boundaries for the patterns. The operators
can be any pair of the following:

+ + Repetitions will be separated by plus signs.

– – Repetitions will be separated by minus signs.

+ – Repetitions will be separated by alternating signs. First will be plus.

– + Repetitions will be separated by alternating signs. First will be minus.

∗ ∗ Repetitions will be separated by ∗.

/ / Repetitions will be separated by /.

, , Repetitions will be separated by comma’s.

: : Repetitions will be separated by single dots.

For such a pair of operators FORM will inspect the patterns and see whether the differences
between the two patterns are just numbers. If the differences are numbers and the absolute value
of the difference of each matching pair is always the same (a difference of zero is allowed too; it
leads to no action for the pair), then FORM will expand the pattern, running from the first to the
last in increments of one. For each pair the counter can either run up or run down, depending on
whether the number in the first pattern is greater or less than the number in the second pattern.
Example:

Local F = <a1b6(c3)>-...+<a4b3(c6)>;

leads to

Local F = a1b6(c3)-a2b5(c4)+a3b4(c5)-a4b3(c6);
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The second form is a bit simpler. It recognizes that there are special cases that can be written
in a more intuitive way. If there is only a single number to be varied, and it is the end of the
pattern, and the rest of the patterns consists only of alphanumeric characters of which the first is
an alphabetic character, we do not need the less than/greater than combination. This is shown in

Symbol a1,...,a12;

There is one extra exception. The variables used this way may have a question mark after them to
indicate that they are wildcards:

id f(a1?,...,a4?) = g(a1,...,a4,a1+...+a4);

This construction did not exist in earlier versions of FORM (version 1 and version 2). There one
needed the #do instruction for many of the above constructions, creating code that was very hard
to read. The ... operator should improve the readability of the programs very much.

3.4 #add

Syntax:
#add object: ”string”

See chapter 13 on dictionaries.
Adds words to an open dictionary.

3.5 #addseparator

Syntax:
#addseparator character

See also #rmseparator (3.53), #call (3.10), #do (3.20)
Adds a character to the list of permissible separator characters for arguments of #call or #do
instructions. By default the two characters that are permitted are the comma and the character
|. Blanks, tabs and double quotes are ignored. Note that the comma must be specified between
double quotes as in

#addseparator ","

3.6 #append

Syntax:
#append <filename>

See also write (3.68), close (3.13), create (3.17), remove (3.49)
Opens the named file for writing. The file will be positioned at the end. The next #write instruction
will add to it.

3.7 #appendpath

Syntax:
#appendpath pathname

See also prependpath (3.43)
Appends the given path relative to the current file to the end of the FORM path.
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3.8 #break

Syntax:
#break

See also switch (3.61), endswitch (3.28), case (3.11), default (3.18)
If the lines before were not part of the control flow (i.e. these lines are used for the later stages of
the program), this instruction is ignored. If they are part of the control flow, the flow will continue
after the matching #endswitch instruction. The #break instruction must of course be inside the
range of a #switch/#endswitch construction.

3.9 #breakdo

Syntax:
#breakdo [<number>]

See also #do (3.20) and #enddo (3.23)
The #breakdo instruction allows one to jump out of a #do loop. If a (nonzero integer) number
is specified it indicates the number of loops the program should terminate. Control will continue
after the #enddo instruction of the number of loops indicated by ‘number’. The default value is
one. If the value is zero the statement has no effect.

3.10 #call

Syntax:
#call procname(var1,...,varn)

See also procedure (3.45), endprocedure (3.27)
This instruction calls the procedure with the name procname. The result is that FORM looks
for this procedure, first in its procedure buffers (for procedures that were defined in the regular
text stream as explained under the #procedure instruction), then it looks for a file by the name
procname.prc in the current directory, and if it still has not found the procedure, it looks in the
directories indicated by the path variable in either the setup file or at the start of the program (see
chapter 17 on the setup file). Next it looks for the -p option in the command that started FORM
(see the chapter on running FORM). If this -p option has not been used FORM will see whether
there is an environment variable by the name FORMPATH. The directories indicated there will be
searched for the file procname.prc. If FORM cannot find the file, there will be an error message
and execution will be stopped immediately.

Once the procedure has been located, FORM reads the whole file and then determines whether
the number of parameters is identical in the #call instruction and the #procedure instruction. A
difference is a fatal error.

The parameter field consists of strings, separated by commas. If a string contains a comma,
this comma should be preceded by a backslash character (\). If a string should contain a linefeed,
one should ‘escape’ this linefeed by putting a backslash and continue on the next line.

Before version 3 of FORM the syntax was different. The parentheses were curly brackets and the
separators the symbol |. This was made to facilitate the use of strings that might contain commas.
In practise however, this turned out to be far from handy. In addition the new preprocessor
calculator is a bit more active and hence an instruction of the type

#call test{1}
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will now be intercepted by the preprocessor calculator and changed into

#call test1

Because there are many advantages to the preprocessor calculator treating the parameters of the
procedures before they are called (in the older versions it did not do this), the notation has been
changed. FORM still understands the old notation, provided that there is no conflict with the
preprocessor calculator. Hence

#call test{1|a}

#call test{1,a}

#call test(1|a)

#call test(1,a)

are all legal and give the same result, but only the last notation will work in future versions of
FORM.

Nowadays also the use of the argument field wildcard (see chapter 5 on pattern matching) is
allowed as in the regular functions:

#define a "1"

#define bc2 "x"

#define bc3 "y"

#define b "c‘~a’"

#procedure hop(c,?d);

#redefine a "3"

#message This is the call: ‘c’,‘?d’

#endprocedure

#redefine a "2"

#message This is b: ‘b’

~~~This is b: c2

#call hop(‘b‘!b’’‘!b’‘b’‘!b’‘b’,‘~a’,‘b’,‘a’)

~~~This is the call: xc2c3c2c3,3,c3,2

.end

We also see here that the rules about delayed substitution (see also the #define instruction in section
3.19) apply. The use of ‘!b’ cancels the delayed substitution that is asked for in the definition of b.

The default extension for procedure files is .prc, but it is possible to change this. There are two
different ways: One is with the #procedureExtension instruction in section 3.46. The other is via
the setup (see the chapter on the setup file, chapter 17).

3.11 #case

Syntax:
#case string

See also switch (3.61), endswitch (3.28), break (3.8), default (3.18)
The lines after the #case instruction will be used if either this is the first #case instruction of
which the string matches the string in the #switch instruction, or the control flow was already
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using the lines before this #case instruction and there was no #break instruction (this is called
fall-through). The control flow will include lines either until the next matching #break instruction,
or until the matching #endswitch instruction.

3.12 #clearoptimize

Syntax:
#clearoptimize
See the chapter about optimization 10

3.13 #close

Syntax:
#close <filename>

See also write (3.68), append (3.6), create (3.17), remove (3.49)
This instruction closes the file by the given name, if such a file had been opened by the previous
#write instruction. Normally FORM closes all such files at the end of execution. Hence the user
would not have to worry about this. The use of a subsequent #write instruction with the same file
name will remove the old contents and hence start basically a new file. There are times that this
is useful.

3.14 #closedictionary

Syntax:
#closedictionary

See chapter 13 on dictionaries.
Either closes an open dictionary (3.39) or stops using the dictionary (3.67) that is currently used
for output translation.

3.15 #commentchar

Syntax:
#commentchar character

The specified character should be a single non-whitespace character. There may be white space
(blanks and/or tabs) before or after it. The character will take over the role of the comment char-
acter. i.e. any line that starts with this character in column 1 will be considered commentary. This
feature was provided because output of some other algebra programs could put the multiplication
sign in column 1 in longer expressions.

The default commentary character is ∗.

3.16 #continuedo

Syntax:
#continuedo [<number>]

See also #do (3.20) and #enddo (3.23)
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The #continuedo instruction allows one to jump to the next iteration of a #do loop. If a (nonzero
integer) number is specified it indicates the number of enclosing loops that the program should
continue to the next iteration of. Control will continue at the beginning of the next iteration of the
enclosing loop indicated by ‘number’. The default value is one. If the value is zero the instruction
has no effect.

3.17 #create

Syntax:
#append <filename>

See also write (3.68), close (3.13), append (3.6), remove (3.49)
Opens the named file for writing. If the file existed already, its previous contents will be lost. The
next #write instruction will add to it. In principle this instruction is not needed, because the
#write instruction would create the file if it had not been opened yet at the moment of writing.

3.18 #default

Syntax:
#default

See also switch (3.61), endswitch (3.28), case (3.11), break (3.8)
Control flow continues after this instruction if there is no #case instruction of which the string
matches the string in the #switch instruction. Control flow also continues after this instruction, if
the lines before were included and there was no #break instruction to stop the control flow (fall-
through). Control flow will stop either when a matching #break instruction is reached, or when a
matching #endswitch is encountered. In the last case of course control flow will continue after the
#endswitch instruction.

3.19 #define

Syntax:
#define name ”string”

See also redefine (3.48), undefine (3.66)
in which name refers to the name of the preprocessor variable to be defined and the contents of
the string will form the value of the variable. The double quotes are mandatory delimiters of the
string.

The use of the #define instruction creates a new instance of the preprocessor variable with
the given name. This means that the old instance remains. If for some reason the later instance
becomes undefined (see for instance #undefine), the older instance will be the one that is active.
If the old definition is to be overwritten, one should use the #redefine instruction.

As of version 3.2 preprocessor variables can also have arguments as in the C language. Hence
#define var(a,b) ”(‘~a’+‘~b’+‘c’)”
is allowed. The parameters should be referred to inside a pair of ‘’ as with all preprocessor

variables. A special feature is the socalled delayed substitution. With macros like the above the
question is always when a preprocessor variable will be substituted. Take for instance

#define c "3"

#define var1(a,b) "(‘~a’+‘~b’+‘c’)"
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#define var2(a,b) "(‘~a’+‘~b’+‘~c’)"

#redefine c "4"

Local F1 = ‘var1(1,2)’;

Local F2 = ‘var2(1,2)’;

Print;

.end

F1 =

6;

F2 =

7;

The parameter c will be substituted immediately when var1 is defined. In var2 it will be only
substituted when var2 is used. It should be clear that a and b should also be used in the delayed
fashion because they do not exist yet at the moment of the definition of var1 and var2. Notice also
that the whole macro, with its arguments should be placed between the backquote and the quote.
Another example can be found with the #call instruction. See section 3.10

3.20 #do

Syntax:
#do lvar = i1,i2
#do lvar = i1,i2,i3
#do lvar = {string1|...|stringn}
#do lvar = {string1,...,stringn}
#do lvar = nameofexpression

See also enddo (3.23)
The #do instruction needs a matching #enddo instruction. All code in-between these two instruc-
tions will be read as many times as indicated in the parameter field of the #do instruction. The
parameter lvar is a preprocessor variable of which the value is determined by the other parameters.
Inside the loop it should be referred to by enclosing its name between a backquote/quote pair as is
usual for preprocessor variables. The various possible parameter fields have the following meaning:

#do lvar = i1,i2 The parameters i1 and i2 should be integers or names of dollar expressions that
evaluate into integers. The first time in the loop lvar will get the value of i1 (as a string) and
each next time its value will be one greater (translated into a string again). The last time in
the loop the value of lvar will be the greatest integer that is less or equal to i2. If i2 is less
than i1, the loop is skipped completely. If i2 is the name of a dollar variable, each time the
control reaches the end of the loop the dollar variable is evaluated and the current value is
used.

#do lvar = i1,i2,i3 The parameters i1,i2 and i3 should be integers or names of dollar expressions
that evaluate into integers. The first time in the loop lvar will get the value of i1 (as a string)
and each next time its value will be incremented by adding i3 (translated into a string again).
If i3 is positive, the last value of lvar will be the one for which lvar+i3 is greater than i2. If
i2 is less than i1, the loop is skipped completely. If i3 is negative the last value of lvar will
be the one for which lvar+i3 is less than i2. If i3 is zero there will be an error. If i2 or i3 are
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the names of a dollar variable, each time the control reaches the end of the loop the dollar
variable(s) is/are evaluated and the current value is used.

#do lvar = {string1|...|stringn} The first time in the loop the value of lvar is the string indi-
cated by string1, the next time will be string2 etc till the last time when it will be stringn.
This is called a listed loop. The notation with the | is an old notation which is still accepted.
The new notation uses a comma instead.

#do lvar = {string1,...,stringn} The first time in the loop the value of lvar is the string indi-
cated by string1, the next time will be string2 etc till the last time when it will be stringn.
This is called a listed loop.

#do lvar = expression The loop variable will take one by one for its value all the terms of
the given expression. This is protected against changing the expression inside the loop by
making a copy of the expression inside the memory. Hence one should be careful with very
big expressions. An expression that is zero gives a loop over zero terms, hence the loop is
never executed.

The first two types of #do instructions are called numerical loops. In the parameters of numerical
loops the preprocessor calculator is invoked automatically. One should make sure not to use a
leading { for the first numerical parameter in such a loop. This would be interpreted as belonging
to a listed loop.

After a loop has been finished, the corresponding preprocessor variable will be undefined. This
means that if there is a previous preprocessor variable by the same name, the value of the #do
instruction will be used inside the loop, and afterwards the old value will be active again.

It is allowed to overwrite the value of a preprocessor #do instruction variable. This can be very
useful to create the equivalent of a repeat loop that contains .sort instructions as in

#do i = 1,1

id,once,x = y+2;

if ( count(x,1) > 0 ) redefine i "0";

.sort

#enddo

A few remarks are necessary here. The redefine statement (see section 7.125) should be before the
last .sort inside the loop, because the #do instruction is part of the preprocessor. Hence the value
of i is considered before the module is executed. This means that if the redefine would be after the
.sort, two things would go wrong: First the loop would be terminated before the redefine would
ever make a chance of being executed. Second the statement would be compiled in the expectation
that there is a variable i, but then the loop would be terminated. Afterwards, when the statement
is being executed it would refer to a variable that does not exist any longer.

If one wants to make a loop over the externals of the brackets of an expression only, one needs
to do some work. Assume we have the expression F and we want to loop over the brackets in x
and y:

L FF = F;

Bracket x,y;

.sort

CF acc,acc2;

Skip F;

Collect acc,acc2;
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id acc(x?) = 1;

id acc2(x?)= 1;

B x,y;

.sort

Skip F;

Collect acc;

id acc(x?) = 1;

.sort

#do i = FF

L G = F[‘i’];

.

.

#enddo

Notice that we have to do the collect trick twice because the first time the bracket could be too
long for one term. The second time that restriction doesn’t exist because besides the x and the y
there are only integer coefficients.

3.21 #else

Syntax:
#else

See also if (3.33), endif (3.25), elseif (3.22), ifdef (3.34), ifndef (3.35)
This instruction is used inside a #if/#endif construction. The code that follows it until the #endif
instruction will be read if the condition of the #if instruction (and of none of the corresponding
#elseif instructions) is not true. If any of these conditions is true, this code is skipped. The
reading is stopped after the matching #endif is encountered and continued after this matching
#endif instruction.

3.22 #elseif

Syntax:
#elseif ( condition )

See also if (3.33), endif (3.25), else (3.21)
The syntax of the condition is identical to the syntax for the condition in the #if instruction. The
#elseif instruction can occur between an #if and an #endif instruction, before a possible matching
#else instruction. The code after this condition till the next #elseif instruction, or till a #else
instruction or till a #endif instruction, whatever comes first, will be read if the condition in the
#elseif instruction is true and none of the conditions in matching previous #if or #elseif instructions
were true. The reading is stopped after the matching #elseif/#else/#endif is encountered and
continued after the matching #endif instruction.

Example

#if ( ‘i’ == 2 )

some code

#elseif ( ‘i’ == 3 )

more code

#elseif ( ‘j’ >= "x2y" )
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more code

#else

more code

#endif

3.23 #enddo

Syntax:
#enddo

See also do (3.20)
Used to terminate a preprocessor do loop. See the #do instruction.

3.24 #endfloat

Syntax:
#endfloat

See also startfloat (3.60) and chapter 22 on the floating point capability.

3.25 #endif

Syntax:
#endif

See also if (3.33), else (3.21), elseif (3.22), ifdef (3.34), ifndef (3.35)
Used to terminate a #if, #ifdef or #ifndef construction. Reading will continue after it.

3.26 #endinside

Syntax:
#endinside

See also #inside (3.37)
Used to terminate a #inside construction in the preprocessor. For more details, see the #inside
instruction.

3.27 #endprocedure

Syntax:
#endprocedure

See also procedure (3.45), call (3.10)
Each procedure must be terminated by an #endprocedure instruction. If the procedure resides in
its own file, the #endprocedure will cause the closing of the file. Hence any text that is in the file
after the #endprocedure instruction will be ignored.

When control reaches the #endprocedure instruction, all (local) preprocessor variables that
were defined inside the procedure and all parameters of the call of the procedure will become
undefined.
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3.28 #endswitch

Syntax:
#endswitch

See also switch (3.61), case (3.11), break (3.8), default (3.18)
This instruction marks the end of a #switch construction. After none or one of the cases of the
#switch construction has been included in the control flow, reading will continue after the matching
#endswitch instruction. Each #switch needs a #endswitch, unless a .end instruction is encountered
first.

3.29 #exchange

Syntax:
#exchange expr1,expr2
#exchange $var1,$var2

Exchanges the names of two expressions. This means that the contents of the expressions remain
where they are. Hence the order in which the expressions are processed remains the same, but the
name under which one has to refer to them has been changed.

In the variety with the dollar variables the contents of the variables are exchanged. This is not
much work, because dollar variables reside in memory and hence only two pointers to the contents
have to be exchanged (and some extra information about the contents).

This instruction can be very useful when sorting expressions or dollar variables by their contents.

3.30 #external

Syntax:
#external [”prevar”] systemcommand

Starts the command in the background, connecting to its standard input and output. By default,
the #external command has no controlling terminal, the standard error stream is redirected to
/dev/null and the command is run in a subshell in a new session and in a new process group (see
the preprocessor instruction #setexternalattr).

The optional parameter “prevar” is the name of a preprocessor variable placed between double
quotes. If it is present, the “descriptor” (small positive integer number) of the external command
is stored into this variable and can be used for references to this external command (if there is
more than one external command running simultaneously).

The external command that is started last becomes the “current” (active) external command.
All further instructions #fromexternal and #toexternal deal with the current external command.

3.31 #factdollar

Syntax:
#factdollar $-variable

See also the chapters on polynomials 11 and $-variables 6
The #factdollar instruction causes the factorization of the indicated $-variable. After this instruc-
tion and until the $-variable is redefined there will be two versions of the variable: one is the original
unfactorized version and the other is a list of factors. If the name of the variable is $a the factors
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can be accessed as $a[1], · · · , $a[n]. The total number of factors is given by $a[0]. These factors
can also be treated as preprocessor variables by putting them between quotes as in ‘$a[2]’.

3.32 #fromexternal

Syntax:
#fromexternal[+−] [”[$]varname” [maxlength]]

Appends the output of the current external command to the FORM program. The semantics differ
depending on the optional arguments. After the external command sends the prompt, FORM will
continue with a next line after the line containing the #fromexternal instruction. The prompt
string is not appended. The optional + or − sign after the name has influence on the listing of the
content. The varieties are:

#fromexternal[+−]
The semantics is similar to the #include instruction but folders are not supported.

#fromexternal[+−] ”[$]varname”
is used to read the text from the running external command into the preprocessor variable varname,
or into the dollar variable $varname if the name of the variable starts with the dollar sign “$”.

#fromexternal[+−] ”[$]varname” maxlength
is used to read the text from the running external command into the preprocessor (or dollar)
variable varname. Only the first maxlength characters are stored.

3.33 #if

Syntax:
#if ( condition )

See also endif (3.25), else (3.21), elseif (3.22), ifdef (3.34), ifndef (3.35)
The #if instruction should be accompanied by a matching #endif instruction. In addition there
can be between the #if and the #endif some #elseif instructions and/or a single #else instruction.
The condition is a logical variable that is true if its value is not equal to zero, and false if its value
is zero. Hence it is allowed to use

#if ‘i’

statements

#endif

provided that i has a value which can be interpreted as a number. If there is just a string that
cannot be seen as a logical condition or a number it will be interpreted as false. The regular syntax
of the simple condition is

#if ‘i’ == st2x

statements

#endif

or

#if ( ‘i’ == st2x )

statements

#endif
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in which the compare is a numerical compare if both strings can be seen as numbers, while it will
be a string compare if at least one of the two cannot be seen as a numerical object. One can also
use more complicated conditions as in

#if ( ( ‘i’ > 5 ) && ( ‘j’ > ‘i’ ) )

These are referred to as composite conditions. The possible operators are

> Greater than, either in numerical or in lexicographical sense.

< Less than, either in numerical or in lexicographical sense.

>= Greater than or equal to, either in numerical or in lexicographical sense.

<= Less than or equal to, either in numerical or in lexicographical sense.

== or = Equal to.

! = Not equal to.

&& Logical and operator to combine conditions.

|| Logical or operator to combine conditions.

If the condition evaluates to true, the lines after the #if instruction will be read until the first
matching #elseif instruction, or a #else instruction or a #endif instruction, whatever comes first.
After such an instruction is encountered input reading stops and continues after the matching
#endif instruction.

Like with the regular if-statement (see 7.73), there are some special functions that allow the
asking of questions about objects. These are
exists() The argument of exists is the name of an expression or a $-variable. This

function then returns one if this object exists, cq. has been defined. Otherwise
it returns zero.

isdefined() The argument of isdefined is the name of a preprocessor variable. This function
then returns one if this object has been defined. Otherwise it returns zero.
Technically #ifdef ‘VAR’ and #if ( isdefined(VAR) ) are the same. The
isdefined function allows for greater flexibility in composite conditions.

isfactorized() The argument of isfactorized is the name of an expression or a $-variable.
This function then returns one if the object has been factorized. Otherwise it
returns zero.

isnumerical() The argument of isnumerical is the name of an expression or a $-variable. This
function then returns one if the object contains a single term that is purely
numerical in nature. Otherwise it returns zero.

maxpowerof() The argument of maxpowerof is the name of a symbol. This function then
evaluates into the maximum power of that symbol as it has been declared. If
no maximum power has been set in the declaration of the symbol, the general
maximum power for symbols is returned (see 7.144).

minpowerof() The argument of minpowerof is the name of a symbol. This function then
evaluates into the minimum power of that symbol as it has been declared. If
no minimum power has been set in the declaration of the symbol, the general
minimum power for symbols is returned (see 7.144).
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sizeof() The argument of termsin is the name of an expression or a $-variable. This
function then evaluates into the number of FORM words in that expression
or variable.

termsin() The argument of termsin is the name of an expression or a $-variable. This
function then evaluates into the number of terms in that expression.

3.34 #ifdef

Syntax:
#ifdef ‘prevar’

See also if (3.33), endif (3.25), else (3.21), ifndef (3.35)
If the named preprocessor variable has been defined the condition is true, else it is false. For the
rest the instruction behaves like the #if instruction.

An alternative is to use the isdefined object inside the #if instruction.

3.35 #ifndef

Syntax:
#ifndef ‘prevar’

See also if (3.33), endif (3.25), else (3.21), ifdef (3.34)
If the named preprocessor variable has been defined the condition is false, else it is true. For the
rest the instruction behaves like the #if instruction.

3.36 #include

Syntax:
#include[−+] filename
#include[−+] filename # foldname

The named file is searched for and opened. Reading continues from this file until its end. Then the
file will be closed and reading continues after the #include instruction. If a foldname is specified,
FORM will only read the contents of the first fold it encounters in the given file that has the
specified name.

The file is searched for in the current directory, then in the path specified in the path variable in
the setup file or at the beginning of the program (see chapter 17 on the setup file). Next it will look
in the path specified in the -p option when FORM is started (see the chapter on running FORM).
If this option has not been used, FORM will look for the environment variable FORMPATH. If
this variable exists it will be interpreted as a path and FORM will search the indicated directories
for the given file. If none is found there will be an error message and execution will be halted.

The optional + or − sign after the name has influence on the listing of the contents of the file.
A − sign will have the effect of a #− instruction during the reading of the file. A plus sign will
have the effect of a #+ instruction during the reading of the file.

A fold is defined by a starting line of the format:

*--#[ name :

and a closing line of the format

*--#] name :
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in which the first character is actually the current commentary character (see the #commentchar
instruction). All lines between two such lines are considered to be the contents of the fold. If
FORM decides that it needs this fold, it will read these contents and put them in its input stream.
More about folds is explained in the manual of the STedi editor which is also provided in the
FORM distribution.

3.37 #inside

Syntax:
#inside $var1 [more $variables]

See also #endinside (3.26)
Used to execute a few statements on the contents of one or more dollar variables (see 6) during
compilation time. Although this is a preprocessor instruction one can use the triple dot operator
provided one uses the generic version with the <>.
The statements in the scope of the #inside / #endinside construction must be regular executable
statements. They may not contain end-of-module instructions like the .sort instruction. It is
allowed to use dollar variables, procedures and preprocessor do loops and if’s, but it is not allowed
to nest the #inside / #endinside constructions.

3.38 #message

Syntax:
#message themessagestring

This instruction places a message in the output that is clearly marked as such. It is printed with
an initial three characters in front as in

Symbols a,b,c;

#message Simple example;

~~~Simple example;

Local F = (a+b+c)^10;

.end

Time = 0.00 sec Generated terms = 66

F Terms in output = 66

Bytes used = 1138

Note that the semicolon is not needed and if present is printed as well. If one needs messages
without this clear marking, one should use the #write instruction.

3.39 #opendictionary

Syntax:
#opendictionary name

See chapter 13 on dictionaries.
Opens a dictionary and makes it ready for adding words to it. If the dictionary does not exist yet,
it will be created.

38



3.40 #optimize

Syntax:
#optimize nameofoneexpression
See the chapter about optimization 10

3.41 #pipe

Syntax:
#pipe systemcommand

See also system (3.62)
This forces a system command to be executed by the operating system. The complete string
(excluding initial blanks or tabs) is passed to the operating system. Next FORM will intercept
the output of whatever is produced and read that as input. Hence, whenever output is produced
FORM will take action, and it will wait when no output is ready. After the command has been
finished, FORM will continue with the next line. This instruction has only been implemented on
systems that support pipes. This is mainly UNIX and derived systems. Note that this instruction
also introduces operating system dependent code. Hence it should be used with great care.

3.42 #preout

Syntax:
#preout ON
#preout OFF

Turns listing of the output of the preprocessor to the compiler on or off. Example:

#PreOut ON

S a1,...,a4;

S,a1,a2,a3,a4

L F = (a1+...+a4)^2;

L,F=(a1+a2+a3+a4)^2

id a4 = -a1;

id,a4=-a1

.end

Time = 0.00 sec Generated terms = 10

F Terms in output = 3

Bytes used = 52

3.43 #prependpath

Syntax:
#prependpath pathname

See also appendpath (3.7)
Prepends the given path relative to the current file to the beginning of the FORM path.
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3.44 #printtimes

Syntax:
#printtimes

Prints the current execution time and real time in the same way as done at the end of the program.
Helps in monitoring the real time passed in TFORM jobs. Example:

#Printtimes

423.59 sec + 5815.88 sec: 6239.47 sec out of 1215.29 sec

3.45 #procedure

Syntax:
#procedure name(var1,...,varn)

See also endprocedure (3.27), call (3.10)
Name is the name of the procedure. It will be referred to by this name. If the procedure resides
in a separate file the name of the file should be name.prc and the #procedure instruction should
form the first line of the file. The # should be the first character of the file. The parameter field is
optional. If there are no parameters, the procedure should also be called without parameters (see
the #call instruction). The parameters (here called var1 to varn) are preprocessor variables and
hence they should be referred to between a backquote/quote pair as in ‘var1’ to ‘varn’. If there
exist already variables with such names when the procedure is called, the new definition comes
on top of the old one. Hence in the procedure (and procedures called from it, unless the same
problems occurs there too, as would be the case with recursions) the new definition is used, and it
is released again when control returns from the procedure. After that the old definition will be in
effect again.

If the procedure is included in the regular input stream, FORM will read the text of the
procedure until the #endprocedure instruction and store it in a special buffer. When the procedure
is called, FORM will read the procedure from this buffer, rather than from a file. In systems where
file transfer is slow (very busy server with a slow network) this may be faster, especially when many
small procedures are called.

One way to make libraries that contain many procedures and maybe more code is to put all
procedures into one header (.h) file and include this file at the beginning of the program with a
#include instruction. This way one has all procedures load and one knows for sure that it are
the proper procedures as it guards against the inadvertently picking up of procedures from other
directories. It also makes for fewer files and hence makes for better housekeeping.

3.46 #procedureextension

Syntax:
#procedureextension string

See also #call (3.10)
The default extension of procedures is .prc in FORM. It is however possible that this clashes with
the extensions used by other programs like the Grace system (Yuasa et al, Prog. Theor. Phys.
Suppl. 138(2000)18 ). In that case it is possible to change the extension of the procedures in
the current program. This is either done via the setup (page 17) or by the #procedureextension
instruction of the preprocessor. The new string replaces the string prc, used by default. For the
new string the following restrictions hold:
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1. The first character must be alphabetic

2. No whitespace characters (blanks and/or tabs) are allowed

For the rest any characters can be used.
The new extension will remain valid either till the next #procedureextension instruction or to the
next .clear instruction (page 4), whatever comes first.

3.47 #prompt

Syntax:
#prompt [newprompt]

Sets a new prompt for the current external command (if present) and all further (newly started)
external commands.

If newprompt is an empty string, the default prompt (an empty line) will be used.
The prompt is a line consisting of a single prompt string. By default, this is an empty string.

3.48 #redefine

Syntax:
#redefine name ”string”

See also define (3.19), undefine (3.66)
in which name refers to the name of the preprocessor variable to be redefined. The contents of
the string will be its new value. If no variable of the given name exists yet, the instruction will be
equivalent to the #define instruction.

3.49 #remove

Syntax:
#remove <filename>

See also write (3.68), append (3.6), create (3.17), close (3.13)
Deletes the named file from the system. Under UNIX this would be equivalent to the instruction

#system rm filename

and under MS-DOS oriented systems like Windows it would be equivalent to

#system del filename

The difference with the #system instruction is that the #remove instruction does not depend on
the particular syntax of the operating system. Hence the #remove instruction can always be used.

3.50 #reset

Syntax:
#reset [<keyword>]

See also ‘TIMER ’ preprocessor variable.
Currently the only keywords that are allowed are timer and stopwatch. They have the same effect,
which is to reset the timer for the ‘timer ’ (or ‘stopwatch ) preprocessor variable (see 3.1).
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3.51 #reverseinclude

Syntax:
#reverseinclude[−+] filename
#reverseinclude[−+] filename # foldname

This instruction is identical to the #include 3.36 instruction, with the exception that the statements
and instructions in the file are read in reverse order. This can be useful at times when code is
generated in a particular order in a file and one would like to ’undo’ this code. It is somewhat
related to the effects of the debugflag option (10.0.1) in the optimization options of the format
statement 10.

There are a few limitations. If, for instance, linefeeds or semicolons occur inside preprocessor
variables, the reading routines cannot see this. Additionally unfinished strings (unmatched double
quotes) will result in a fatal error. On the other hand the fold structure remains preserved.

3.52 #rmexternal

Syntax:
#rmexternal [n]

Terminates an external command. The integer number n must be either the descriptor of a running
external command, or 0.

If n is 0, then all external programs will be terminated.
If n is not specified, the current external command will be terminated.
The action of this instruction depends on the attributes of the external channel (see the #setex-

ternalattr (section 19.5) instruction). By default, the instruction closes the commands’ IO channels,
sends a KILL signal to every process in its process group and waits for the external command to
be finished.

3.53 #rmseparator

Syntax:
#rmseparator character

See also #addseparator (3.5), #call (3.10), #do (3.20)
Removes a character from the list of permissible separator characters for arguments of #call or #do
instructions. By default the two characters that are permitted are the comma and the character
|. Blanks, tabs and double quotes are ignored. Note that the comma must be specified between
double quotes as in

#rmseparator ","

3.54 #setexternal

Syntax:
#setexternal n

Sets the “current” external command. The instructions #toexternal and #fromexternal deal with
the current external command. The integer number n must be the descriptor of a running external
command.
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3.55 #setexternalattr

Syntax:
#setexternalattr list of attributes

sets attributes for newly started external commands. Already running external commands are not
affected. The list of attributes is a comma separated list of pairs attribute=value, e.g.:

#setexternalattr shell=noshell,kill=9,killall=false

Possible attributes are:

kill specifies the signal to be sent to the external command either before the termination of the
FORM program or by the preprocessor instruction #rmexternal. By default this is 9 (
SIGKILL). Number 0 means that no signal will be sent.

killall Indicates whether the kill signal will be sent to the whole group or only to the initial process.
Possible values are “true” and “false”. By default, the kill signal will be sent to the whole
group.

daemon Indicates whether the command should be “daemonized”, i.e. the initial process will
be passed to the init process and will belong to the new process group in the new session.
Possible values are “true” and “false”. By default, “true”.

shell specifies which shell is used to run a command. (Starting an external command in a subshell
permits to start not only executable files but also scripts and pipelined jobs. The disadvantage
is that there is no way to detect failure upon startup since usually the shell is started success-
fully.) By default this is “/bin/sh -c”. If set shell=noshell, the command will be stared by
the instruction #external directly but not in a subshell, so the command should be a name of
the executable file rather than a system command. The instruction #external will duplicate
the actions of the shell in searching for an executable file if the specified file name does not
contain a slash (/) character. The search path is the path specified in the environment by the
PATH variable. If this variable isn’t specified, the default path “:/bin:/usr/bin” is used.

stderr specifies a file to redirect the standard error stream to. By default it is “/dev/null”. If
set stderr=terminal, no redirection occurs.

Only attributes that are explicitly mentioned are changed, all others remain unchanged. Note,
changing attributes should be done with care. For example,

#setexternalattr daemon=false

starts a command in the subshell within the current process group with default attributes kill=9
and killall=true. The instruction #rmexternal sends the KILL signal to the wholegroup, which
means that also FORM itself will be killed.

3.56 #setrandom

Syntax:
#setrandom number

See also random (8.57) and ranperm (8.58)
The #setrandom instruction initializes the random number generator random 8.57. The number
that is used as a seed can have the length of two words in FORM. This means that on a 32-bits
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computer it can be an (unsigned) 32-bits integer and on a 64-bits computer it can be an (unsigned)
64 bits integer. If there is no #setrandom instruction the random number generator is initialized in
a built in standard way. The #setrandom instruction also initializes the random number generators
of the workers when one uses TFORM or ParFORM. They are initialized with different seeds
that are derived in a non-trivial way from the seed given by the user and the number of the worker.

3.57 #show

Syntax:
#show [preprocessorvariablename[s]]

If no names are present, the contents of all preprocessor variables will be printed to the regular
output. If one or more preprocessor variables are specified (separated by comma’s), only their
contents will be printed. The preprocessor variables should be represented by their name only.
No enclosing backquote/quote should be used, because that would force a substitution of the
preprocessor variable before the instruction gets to see the name. Example:

#define MAX "3"

Symbols a1,...,a‘MAX’;

L F = (a1+...+a‘MAX’)^2;

#show

#The preprocessor variables:

0: VERSION_ = "3"

1: SUBVERSION_ = "2"

2: NAMEVERSION_ = ""

3: DATE_ = "Wed Feb 28 08:43:20 2007"

4: NAME_ = "testpre.frm"

5: CMODULE_ = "1"

6: MAX = "3"

.end

Time = 0.00 sec Generated terms = 6

F Terms in output = 6

Bytes used = 102

We see that the variable MAX has indeed the value 3. There are six additional variables which have
been defined by FORM itself. Hence the trailing underscore which cannot be used in user defined
names. The current version of FORM is shown in the variable VERSION and the name of the
current program is given in the variable NAME . For more about the system defined preprocessor
variables see 3.1.

There is another preprocessor variable that does not show in the listings. Its name is SHOW-
INPUT . This variable has the value one if the listing of the input is on and the value zero if the
listing of the input is off.

3.58 #skipextrasymbols

Syntax:
#skipextrasymbols positivenumber

See also ExtraSymbols (7.55) and the chapter on optimization (10).
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This instructions adds a number of dummy extra symbols to the list of extra symbols (7.55). This
can be used when several optimizations are done on an expression in such a way that the extra
symbols of previous optimizations are still present. Normally the number space for them is erased
in a #clearoptimize instruction. This can be avoided with a sequence like

#skipextrasymbols,{‘optimmaxvar_’-‘optimminvar_’+1}

In this case the numbering of the next optimization will start after the last extra symbol of the
previous optimization. One should realize however that the definitions of the extra symbols are not
kept once the new optimization is started or once a #clearoptimize instruction is issued. Example:

#-

S a,b,c,d,e;

L F = (a+b+c+d+3*e)^3;

B b;

.sort

ExtraSymbols,array,w;

Format O3,stats=ON;

#optimize F

#write <> " %4O"

.sort

#SkipExtraSymbols,{‘optimmaxvar_’-‘optimminvar_’+1}

id b = b+1;

Print +f;

B b;

.end

Because the O3 format is still active, the final printing uses the optimization as well. If the
#SkipExtraSymbols instruction would have been omitted, the numbering would start again from
one, while the rhs. of their definitions would contain the old extra symbols. The result would be
incorrect.

3.59 #sortreallocate

Syntax:
#sortreallocate

See also “On sortreallocate;” (7.110).
Reallocates the small and large buffer (also on the worker threads) at the end of the current module.
In some cases this can significantly reduce FORM’s memory usage as measured by “resident set
size”.

3.60 #startfloat

Syntax:
#startfloat <precision> [,MZV=<weight>]

See also endfloat (3.24) and chapter 22 on the floating point capability.
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3.61 #switch

Syntax:
#switch string

See also endswitch (3.28), case (3.11), break (3.8), default (3.18)
the string could for instance be a preprocessor variable as in

#switch ‘i’

The #switch instruction, together with #case, #break, #default and #endswitch, allows the user
to conveniently make code for a number of cases that are distinguished by the value of a preprocessor
variable. In the past this was only possible with the use of folds in the #include instruction and the
corresponding include file (see 3.36). Because few people have an editor like STedi (see the FORM
distribution site) that can handle the folds in a proper way, it was judged that the more common
switch mechanism might be friendlier. The proper syntax of a complete construction would be

#switch ‘par’

#case 1

some statements

#break

#case ax2

other statements

#break

#default

more statements

#break

#endswitch

The number of cases is not limited. The compare between the strings in the #switch instruction
and in the #case instructions is as a text string. Hence numerical strings have no special meaning.
If a #break instruction is omitted, control may go into another case. This is called fall-through.
This is a way in which one can have the same statements for several cases. The #default instruction
is not mandatory.

FORM will look for the first case of which the string matches the string in the #switch in-
struction. Input reading (control flow) starts after this #case instruction, and continues till either
a #break instruction is encountered, or the #endswitch is met. After that input reading contin-
ues after the #endswitch instruction. If no case has a matching string, input reading starts after
the #default instruction. If no #default instruction is found, input reading continues after the
matching #endswitch instruction.

#switch constructions can be nested. They can be combined with #if constructions, #do
instructions, etc. but they should obey normal nesting rules (as with nesting of brackets of different
types).

3.62 #system

Syntax:
#system [-e] systemcommand

See also pipe (3.41)
This forces a system command to be executed by the operating system. The complete string
(excluding initial blanks or tabs) is passed to the operating system. FORM will then wait until
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control is returned. Note that this instruction introduces operating system dependent code. Hence
it should be used with great care.
Without the -e option execution of the Form program will halt if the system command returns an
error. With the -e option the Form program will continue execution. The value of the return code
of the system command can be found in the SYSTEMERROR preprocessor variable.

3.63 #terminate

Syntax:
#terminate [exitcode]

This forces FORM to terminate execution immediately. If an exit code is given (an integer number),
this will be the return value that FORM gives to the shell program from which it was run. If no
return value is specified, the value -1 will be returned.

3.64 #timeoutafter

Syntax:
#timeoutafter <Number of seconds>

This instruction starts a timer. When the given time expires the current program will be terminated,
unless the timer is reset before this time. Resetting the timer is dome with the ”#timeoutafter 0”
instruction.

The purpose of this instruction is to prevent runaway programs, because a given subpart takes
much more time than it should. Example:

.sort

#timeoutafter 1000

#call problematicprocedure

.sort

#timeoutafter 0

If one runs many diagrams with a make-like facility like minos, diagrams that behave in an unex-
pected way can be killed this way and minos can continue with the next diagram. Later one can
see which diagrams caused problems and one may study what the problem was.

3.65 #toexternal

Syntax:
#toexternal ”formatstring” <,variables>

Sends the output to the current external command. The semantics of the "formatstring" and the
[,variables] is the same as for the #write instruction, except for the trailing end-of-line symbol.
In contrast to the #write instruction, the #toexternal instruction does not append any new line
symbol to the end of its output.

3.66 #undefine

Syntax:
#undefine name
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See also define (3.19), redefine (3.48)
Name refers to the name of the preprocessor variable to be undefined. This statement causes the
given preprocessor variable to be removed from the stack of preprocessor variables. If an earlier
instance of this variable existed (other variable with the same name), it will become active again.
There are various other ways by which preprocessor variables can become undefined. All variables
belonging to a procedure are undefined at the end of a procedure, and so are all other preprocessor
variables that were defined inside this procedure. The same holds for the preprocessor variable that
is used as a loop parameter in the #do instruction.

3.67 #usedictionary

Syntax:
#usedictionary name #usedictionary name (options)

See chapter 13 on dictionaries.
Starts using a dictionary for output translation.

3.68 #write

Syntax:
#write [<filename>] ”formatstring” [,variables]

See also append (3.6), create (3.17), remove (3.49), close (3.13)
If there is no file specified, the output will be to the regular output channel. If a file is specified,
FORM will look whether this file is open already. If it is open already, the specified output will be
added to the file. If it is not open yet it will be opened. Any previous contents will be lost. This
would be equivalent to using the #create instruction first. If output has to be added to an existing
file, the #append instruction should be used first.

The format string is like a format string in the language C. This means that it is placed between
double quotes. It will contain text that will be printed, and it will contain special character
sequences for special actions. These sequences and the corresponding actions are:

\n A newline character.

\t A tab character.

\” A double quote character.

\b A backslash character.

%% The character %.

% If the last character in the string, it causes the omission of a linefeed at the end of the printing.
Note that if this happens in the regular output (as opposed to a file) there may be interference
with the listing of the input.

%$ A dollar variable. The variable should be indicated in the list of variables. Each occurrence
of %$ will look for the next variable.

%e An active expression. The expression should be indicated in the list of variables. Each occur-
rence of %e will look for the next variable. Unlike the output caused by the print statement
the expression will be printed without its name and there will also be no = sign unless there
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is one in the format string of course. If the current output format is fortran output there is
an extra option. After the name of the expression one should put between parentheses the
name to be used when there are too many continuation cards.

%+e Like %e, but like the +s option in the Print statement7.116 where each term starts on a new
line.

%E Like %e, but whereas the %e terminates the expression with a ;, the %E does not give this
trailing semicolon.

%+E Like %E, but like the +s option in the Print statement7.116 where each term starts on a
new line.

%s A string. The string should be given in the list of variables and be enclosed between double
quotes. Each occurrence of %s will look for the next variable in the list.

%f A file. The name of the file will be expected in the list of variables. The file is searched for in
the current directory, then in path indicated by the path variable in the setup file or at the
beginning of the file (see chapter 17 on the setup file), then in the path specified in the -p
option when FORM is started (see the chapter on running FORM). If this option has not
been used, FORM will look for the environment variable FORMPATH. If this variable exists
it will be interpreted as a path and FORM will search the indicated directories for the given
file. If none is found there will be an error message and execution will be halted.

%X Forces the printing of the list of extra symbols (2.11) and their definitions.

%O Forces the printing of the definitions of the extra symbols in the buffer with the temporary
variables from the previous optimization (see the chapter on optimizations 10).

If no special variables are asked for (by means of %$, %e, %E or %s) the list of variables will be
ignored (if present). Example:

Symbols a,b;

L F = a+b;

#$a1 = a+b;

#$a2 = (a+b)^2;

#$a3 = $a1^3;

#write " One power: %$\n Two powers: %$\n Three powers: %$\n%s"\

,$a1,$a2,$a3," The end"

One power: b+a

Two powers: b^2+2*a*b+a^2

Three powers: b^3+3*a*b^2+3*a^2*b+a^3

The end

.end

Time = 0.00 sec Generated terms = 2

F Terms in output = 2

Bytes used = 32

We see that the writing occurs immediately after the #write instruction, because it is done by the
preprocessor. Hence the output comes before the execution of the expression F.
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S x1,...,x10;

L MyExpression = (x1+...+x10)^4;

.sort

Format Fortran;

#write <fun.f> " FUNCTION fun(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10)"

#write <fun.f> " REAL x1,x2,x3,x4,x5,x6,x7,x8,x9,x10"

#write <fun.f> " fun = %e",MyExpression(fun)

#write <fun.f> " RETURN"

#write <fun.f> " END"

.end

Some remarks are necessary here. Because the #write is a preprocessor instruction, the .sort is
essential. Without it, the expression has not been worked out at the moment we want to write.
The name of the expression is too long for fortran, and hence the output file will use a different
name (in this case the name ‘fun’ was selected). The output file looks like

FUNCTION fun(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10)

REAL x1,x2,x3,x4,x5,x6,x7,x8,x9,x10

fun = 24*x1*x2*x3*x4 + 24*x1*x2*x3*x5 + 24*x1*x2*x3*x6 + 24*x1*x2

& *x3*x7 + 24*x1*x2*x3*x8 + 24*x1*x2*x3*x9 + 24*x1*x2*x3*x10 + 12*

.....

& x8 + 4*x6**3*x9 + 4*x6**3*x10 + x6**4 + 24*x7*x8*x9*x10 + 12*x7*

& x8*x9**2

fun = fun + 12*x7*x8*x10**2 + 12*x7*x8**2*x9 + 12*x7*x8**2*x10 +

& 4*x7*x8**3 + 12*x7*x9*x10**2 + 12*x7*x9**2*x10 + 4*x7*x9**3 + 4*

& x7*x10**3 + 12*x7**2*x8*x9 + 12*x7**2*x8*x10 + 6*x7**2*x8**2 +

& 12*x7**2*x9*x10 + 6*x7**2*x9**2 + 6*x7**2*x10**2 + 4*x7**3*x8 +

& 4*x7**3*x9 + 4*x7**3*x10 + x7**4 + 12*x8*x9*x10**2 + 12*x8*x9**2

& *x10 + 4*x8*x9**3 + 4*x8*x10**3 + 12*x8**2*x9*x10 + 6*x8**2*

& x9**2 + 6*x8**2*x10**2 + 4*x8**3*x9 + 4*x8**3*x10 + x8**4 + 4*x9

& *x10**3 + 6*x9**2*x10**2 + 4*x9**3*x10 + x9**4 + x10**4

RETURN

END

and each time after 19 continuation lines we have to break the expression and use the fun = fun +

trick to continue.

3.69 Some remarks

It should be noted that the various constructions like #do/#enddo, #procedure/#endprocedure,
#switch/#endswitch and #if/#endif all create a certain environment. These environments cannot
be interweaved. This means that one cannot make code of the type

#do i = 1,5

#if ( ‘MAX’ > ‘i’ )

id f(‘i’) = g‘i’(x);

#enddo

some statements
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#do i = 1,5

#endif

#enddo

whether this could be considered useful or not. Similarly one cannot make a construction that
might be very useful:

#do i = 1,5

#do j‘i’ = 1,3

#enddo

some statements

#do i = 1,5

#enddo

#enddo

Currently the syntax does not allow this. This may change in the future.
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Chapter 4

Modules

Modules are the basic execution blocks. Statements are always part of a module, and they will be
executed only when the module is executed. This is directly opposite to preprocessor instructions
which are executed when they are encountered in the input stream.

Modules are terminated by a line that starts with a period. Such a line is called the module
instruction. Once the module instruction has been recognized, the compilation of the module is
terminated and the module will be executed. All active expressions will be processed one by one,
term by term. When each term of an expression has been through all statements of the module,
the combined results of all operations on all the terms of the expression will be sorted and the
resulting expression will be sent to the output. This can be an intermediate file, or it can be some
memory, depending on the size of the output. If the combined output of all active expressions is
less than the parameter “ScratchSize”, the results stay in memory. ScratchSize is one of the setup
parameters (see chapter 17).

A module consists in general of several types of statements:

Declarations These are the declarations of variables.

Specifications These tell what to do with existing expressions as a whole.

Definitions These define new expressions.

Executable statements The operations on all active expressions.

Output specifications These specify the output representation.

End-of-module specifications Extra settings that are for this module only.

Mixed statements They can occur in various classes. Most notably the print statement.

Statements must occur in such an order that no statement follows a statement of a later category,
except as described bellow. This is different from earlier versions of FORM in which the order of
the statements was not fixed. This did cause a certain amount of confusion about the workings of
FORM.

The exceptions are:

� Mixed statements are permitted in the executable statements, output specifications, and
end-of-module specifications parts of a module.

� Format statements are permitted anywhere.
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� ModuleOption statements that control how $-variables are handled during parallel execution
are permitted anywhere.

The last exception allows such ModuleOption statements to appear inside procedures that use
$-variables and do not contain a .sort. For example, the following structure is valid:

#procedure SortlessProc

$procLocalDollar = ...

ModuleOption local $procLocalDollar;

* more executable statements here

#endprocedure

#call SortlessProc

* more executable statements here

.sort

There are several types of modules.

.sort The general end-of-module. Causes execution of all active expressions, and prepares them
for the next module.

.end Executes all active expressions and terminates the program.

.store Executes all active expressions. Then it writes all active global expressions to an inter-
mediate storage file and removes all other non-global expressions. Removes all memory of
declarations except for those that were made before a .global instruction.

.global No execution of expressions. It just saves declarations made thus far from being erased by
a .store instruction.

.clear Executes all active expressions. Then it clears all buffers with the exception of the main
input stream. Continues execution in the main input stream as if the program had started
at this point. The only parameters that cannot be changed at this point are the setup
parameters. They remain. By default also the clock is reset. If this is not desired this can be
changed by means of the ResetTimeOnClear setup variable (see chapter 17).

Each program must be terminated by a .end instruction. If such an instruction is absent and
FORM encounters an end-of-input it will issue a warning and generate a .end instruction.

Module instructions can contain a special commentary that will be printed in all statistics that
are generated during the execution of the module. This special commentary is restricted to 24
characters (the statistics have a fixed format and hence there is only a limited amount of space
available). This commentary is initiated by a colon and terminated by a semicolon. The characters
between this colon and the semicolon are the special message, also called advertisement. Example

.sort:Eliminate x;

would give in the statistics something like

Time = 0.46 sec Generated terms = 360

F Terms in output = 360

Eliminate x Bytes used = 4506
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If the statistics are switched off, there will be no printing of this advertisement either.
For backwards compatibility there is still an obsolete mechanism to pass module options via

the module instructions. This is a feature which will probably disappear in future versions of
FORM. We do give the syntax to allow the user to identify the option properly and enable proper
translation into the moduleoption statement (see 7.91).

.sort(PolyFun=functionname);

.sort(PolyFun=functionname):advertisement;

causes the given function to be treated as a polynomial function. This means that its (single)
argument would be treated as the coefficient of the terms. The action of FORM on individual
terms is

1. Ignore polynomial functions with more than one argument.

2. If there is no polynomial function with a single argument, generate one with the argument 1.

3. If there is more than one polynomial function with a single argument, multiply the argu-
ments and replace these functions with a single polynomial function with the product of the
arguments for a single argument.

4. Multiply the argument of the polynomial function with the coefficient of the term. Replace
the coefficient itself by one.

If, after this, two terms differ only in the argument of their polynomial function FORM will add
the arguments and replace the two terms by a single term which is identical to the two previous
terms except for that the argument of its polynomial function is the sum of their two arguments.

It should be noted that the proper placement of .sort instructions in a FORM program is an
art by itself. Too many .sort instructions cause too much sorting, which can slow execution down
considerably. It can also cause the writing of intermediate expressions which are much larger than
necessary, if the next statements would cause great simplifications. Not enough .sort instructions
can make that cancellations are postponed unnecessarily and hence much work will be done double.
This can slow down execution by a big factor. First an example of a superfluous .sort:

S a1,...,a7;

L F = (a1+...+a7)^16;

.sort

Time = 31.98 sec Generated terms = 74613

F Terms in output = 74613

Bytes used = 1904316

id a7 = a1+a2+a3;

.end

Time = 290.34 sec

F Terms active = 87027

Bytes used = 2253572

Time = 295.20 sec Generated terms = 735471

F Terms in output = 20349

Bytes used = 538884
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Without the sort the same program gives:

S a1,...,a7;

L F = (a1+...+a7)^16;

id a7 = a1+a2+a3;

.end

Time = 262.79 sec

F Terms active = 94372

Bytes used = 2643640

Time = 267.81 sec Generated terms = 735471

F Terms in output = 20349

Bytes used = 538884

and we see that the sorting in the beginning is nearly completely wasted. Now a clear example
of not enough .sort instructions. A common problem is the substitution of one power series into
another. If one does this in one step one could have:

#define MAX "36"

S j,x(:‘MAX’),y(:‘MAX’);

*

* Power series expansion of ln_(1+x)

*

L F = -sum_(j,1,‘MAX’,sign_(j)*x^j/j);

*

* Substitute the expansion of x = exp_(y)-1

*

id x = x*y;

#do j = 2,‘MAX’+1

id x = 1+x*y/‘j’;

#enddo

Print;

.end

Time = 76.84 sec Generated terms = 99132

F Terms in output = 1

Bytes used = 18

F =

y;

With an extra .sort inside the loop one obtains for the same program (after suppressing some of
the statistics:

#define MAX "36"

S j,x(:‘MAX’),y(:‘MAX’);

*

* Power series expansion of ln_(1+x)

*

55



L F = -sum_(j,1,‘MAX’,sign_(j)*x^j/j);

*

* Substitute the expansion of x = exp_(y)-1

*

id x = x*y;

#do j = 2,‘MAX’+1

id x = 1+x*y/‘j’;

.sort: step ‘j’;

Time = 0.46 sec Generated terms = 360

F Terms in output = 360

step 2 Bytes used = 4506

#enddo

.

.

.

Time = 3.07 sec Generated terms = 3

F Terms in output = 1

step 37 Bytes used = 18

Print;

.end

Time = 3.07 sec Generated terms = 1

F Terms in output = 1

Bytes used = 18

F =

y;

It is very hard to give general rules that are more specific than what has been said above. The user
should experiment with the placements of the .sort before making a very large run.

4.1 Checkpoints

If FORM programs have to run for a long time, the reliability of the hardware(computer system
or network) or of the software infrastructure becomes a critical issue. Program termination due to
unforeseen failures may waste days or weeks of invested execution time. The checkpoint mechanism
was introduced to protect long running FORM programs as good as possible from such accidental
interruptions. With activated checkpoints FORM will save its internal state and data from time
to time on the hard disk. This data then allows a recovery from a crash.

The checkpoint mechanism can be activated or deactivated by On and Off statements. If the user
has activated checkpoints, recovery data will be written to disk at the end of a module execution.
Options allow to influence the details of the saving mechanism. If a program is terminated during
execution, FORM can be restarted with the -R option and it will continue its execution at the last
saved recovery point.

The syntax of the checkpoint activation and deactivation is

On checkpoint [<OPTIONS>];

Off checkpoint;
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If no options are given, the recovery data will be saved at the end of every module. If one gives
a time

On checkpoint <NUMBER>[<UNIT>];

the saving will only be done if the given time has passed after the last saving. Possible unit
specifiers are s, m, h, d and the number will then be interpreted as seconds, minutes, hours, or
days, respectively. The default unit is seconds.

If one needs to run a script before or after the saving, one can specify a script filename.

On checkpoint runbefore="<SCRIPTFILENAME>";

On checkpoint runafter="<SCRIPTFILENAME>";

On checkpoint run="<SCRIPTFILENAME>";

The option run sets both the scripts to be run before and after saving.The scripts must have the
executable flag set and they must reside in the execution path of the shell (unless the filename
already contains the proper path).

The scripts receive the module number as an argument (accessible as $1 inside the script). The
return value of the script running before the saving will be interpreted. If the script returns an
error (non-zero return value), a message will be issued and the saving will be skipped.

The recovery data will be written to files named FORMrecv.* with various name extensions. If
a file FORMrecv.tmp exists, FORM will not run unless one gives it the recovery option -R. This
is to prevent the unintentional loss of recovery data. If FORM terminates successfully, all the
additional data files will be removed.

The additional recovery files will be created in the directory containing the scratch files. The
extra files will occupy roughly as much space as the scratch files and the save and hide files combined.
This extra space must be made available, of course.

If recovery data exists and FORM is started with the -R option, FORM will continue execution
after the last module that successfully wrote the recovery data. All the command line parameters
that have been given to the crashed FORM program must also be given to the recovering FORM
program. The input files are not part of the recovery data and will be read in anew when recovering.
Therefore it is strongly discouraged to change any of these files between saving and recovery.
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Chapter 5

Pattern matching

Substitutions are made in FORM by specifying a generic object that should be replaced by an
expression. This generic object is called a pattern. Patterns that the user may already be familiar
with are the regular expressions in many UNIX based systems or just a statement like ls *.frm

to list only files of which the name ends in .frm. In this case the * is called a wildcard that can
take any string value. In symbolic manipulation there will be wildcards also, but their nature will
be different. They are also indicated in a different way.

In FORM wildcard variables are indicated by attaching a question mark (?) to the name of a
variable. The type of the variable indicates what type of object we are looking for. Assume the
following id statements:

Functions f,g;

Symbol x;

id f(g?,x) = g(x,x);

In this statement g will match any function and hence all occurrences of f, in which the first
argument is a function and the second argument is the symbol x, will match. In the right hand
side the function g will be substituted by whatever identity g had to assume in the left hand side
to make the match. Hence f(f,x) will be replaced by f(x,x).

In general function wildcards can only match functions. Even though tensors are special func-
tions, regular function wildcards cannot match tensors, and tensor wildcards cannot match func-
tions. However commuting function wildcards can match noncommuting functions et vice versa.

Index wildcards can only match indices. The dimension of the indices is not relevant. Hence:

id f(mu?,mu?) = 4;

would match both f(ka,ka) and f(2,2). We will see later how to be more selective about such
matches.

When the same wildcard occurs more than once in a pattern, it should be matched by the same
object in all its occurrences. Hence the above pattern would not match f(mu,nu).

There is one complication concerning the above rule of index wildcards only matching indices.
FORM writes contractions with vectors in a special shorthand notation called Schoonschip nota-
tion. Hence f(mu)*p(mu) becomes f(p). This means that the substitution

id f(mu?)*g(nu?) = fg(mu,nu);

should also replace the term f(p)*g(q) by fg(p,q). In this case it looks like the wildcard indices
matched the vectors. This is however not the case, because if we take the previous pattern (with

58



the f(mu?,mu?)), it is not going to match the term f(p,p), because this term should be read as
something of the type f(mu,nu)*p(mu)*p(nu) and that term does not fit the pattern f(mu?,mu?).

Vector wildcards can match vectors, but they can also match vector-like expressions in function
arguments. A vector-like expression is an expression in which all terms contain one single vector
without indices, possibly multiplied by other objects like coefficients, functions or symbols. Hence

id f(p?) = p.p;

would match f(q), f(2*q-r) and f(a*q+f(x)*r), if p, q and r are vectors, and a and x are
symbols, and f is a function. It would not match f(x) and neither would it match f(q*r), nor
f(a*q+x).

Wildcard symbols are the most flexible objects. They can match symbols, numbers and ex-
pressions that do not contain loose indices or vectors without indices. These last objects are called
scalar objects. Hence wildcard symbols can match all scalar objects. In

id x^n? = x^(n+1)/(n+1);

the wildcard symbol n would normally match a numerical integer power. In

id f(x?) = x^2;

there would be a match with f(y), with f(1+2*y) and with f(p.p), but there would not be a
match with f(p) if p is a vector.

There is one extra type of wildcards. This type is rather special. It refers to groups of function
arguments. The number of arguments is not specified. These variables are indicated by a question
mark followed by a name (just the opposite of the other wildcard variables), and in the right hand
side they are also written with the leading question mark:

id f(?name) = g(1,?name);

In this statement all occurrences of f with any number of arguments (including no arguments) will
match. Hence f(mu,nu) will be replaced by g(1,mu,nu). In the case that f is a regular function
and g is a tensor, it is conceivable that the arguments in ?name will not fit inside a tensor. For
instance f(x), with x a symbol, would match and FORM would try to put the symbol inside the
tensor g. This would result in a runtime error. In general FORM will only accept arguments
that are indices or single vectors for a substitution into a tensor. The object ?name is called an
argument field wildcard.

One should realize that the use of multiple argument field wildcards can make the pattern
matching slow.

id f(?a,p1?,?b,p2?,?c,p3?,?d)*g(?e,p3?,?f,p1?,?g,p2?,?h) = ....

may involve considerable numbers of tries, especially when there are many occurrences of f and g
in a term. One should be very careful with this.

A complication is the pattern matching in functions with symmetry properties. In principle
FORM has to try all possible permutations before it can conclude that a match does not occur.
This can become rather time consuming when many wildcards are involved. FORM has a number
of tricks built in, in an attempt to speed this up, but it is clear that for many cases these tricks are
not enough. This type of pattern matching is one of the weakest aspects of ‘artificial intelligence’
in general. It is hoped that in future versions it can be improved. For the moment the practical
consequence is that argument field wildcards cannot be used in symmetric and antisymmetric
functions. If one needs to make a generic replacement in a symmetric function one cannot use
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CFunction f(symmetric),g(symmetric);

id f(?a) = ....;

but one could try something like

CFunction f(symmetric),ff,g(symmetric);

id f(x1?,...,x5?) = ff(x1,...,x5);

id ff(?a) = ...;

id ff(?a) = f(?a);

if f has for instance 5 arguments. If different numbers of arguments are involved, one may need
more than one statement here or a statement with the replace function:

Multiply replace_(f,ff);

It just shows that one should at times be a bit careful with overuse of (anti)symmetric functions.
Cyclic functions do not have this restriction.

When there are various possibilities for a match, FORM will just take the first one it encounters.
Because it is not fixed how FORM searches for matches (in future versions the order of trying may
be changed without notice) one should try to avoid ambiguities as in

id f(?a,?b) = g(?a)*h(?b);

Of course the current search method is fully consistent (and starts with all arguments in ?a and
none in ?b etc, but a future pattern matcher may do it in a different order.

When two argument field wildcards in the left hand side have the same name, a match will only
occur, when they match the same objects. Hence

id f(?a,?a) = g(?a);

will match f(a,b,a,b) or just f (in which case ?a will have zero arguments), but it will not match
f(b,b,b).

Sometimes it is useful when a search can be restricted to a limited set of objects. For this
FORM knows the concept of sets. If the name of a set is attached after the question mark, this
is an indication for FORM to look only for matches in which the wildcard becomes one of the
members of the set:

Symbols a,a1,a2,a3,b,c;

Set aa:a1,a2,a3;

id f(a?aa) = ...

would match f(a1) but not f(b). Sets can also be defined dynamically by enclosing the elements
between curly brackets as in:

Symbols a,a1,a2,a3,b,c;

id f(a?{a1,a2,a3}) = ...

Sets of symbols can contain (small integer) numbers as well. Similarly sets of indices can contain
fixed indices (positive numbers less than the value of fixindex (see the chapter on the setup 17).
This means that some sets can be ambiguous in their nature.

Sometimes sets can be used as some type of array. In the case of
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Symbols a,a1,a2,a3,b,c,n;

Set aa:a1,a2,a3;

id f(a?aa[n]) = ...

not only does ‘a’ have to be an element of the set aa, but if it is an element of that set, n will
become the number of the element that has been matched. Hence for f(a2) the wildcard a would
become a2 and the wildcard n would become 2. These objects can be used in the right-hand side.
One can also use sets in the right-hand side with an index like the n of the previous example:

Symbols a,a1,a2,a3,b1,b2,b3,c,n;

Functions f,g1,g2,g3;

Set aa:a1,a2,a3;

Set bb:b1,b2,b3;

Set gg:g1,g2,g3;

id f(a?aa[n]) = gg[n](bb[n]);

which would replace f(a2) by g2(b2). One cannot do arithmetic with the number of the array
element. Constructions like bb[n+1] are not allowed.

There is one more mechanism by which the array nature of sets can be used. In the statement
(declarations as before)

id f(a?aa?bb) = a*f(a);

a will have to be an element of the set aa, but after the matching it takes the identity of the
corresponding element of the set bb. Hence f(a2) becomes after this statement b2*f(b2).

Wildcards can also give their value directly to $-variables (see chapter 6 about the $-variables).
If a $-variable is attached to a wildcard (if there is a set restriction, it should be after the set) the
$-variable will obtain the same contents as the wildcard, provided a match occurs. If there is more
than one match, the last match will be in the $-variable.

id f(a?$w) = f(a);

will put the match of a in $w. Hence in the case of f(a2) the $-variable will have the value a2. In
the case of f(a2)*f(a3) the eventual value of $w depends on the order in which FORM does the
matching. This is not specified and it would not be a good strategy to make programs that will
depend on it. A future pattern matcher might do it differently! But one could do things like

while ( match(f(a?$w)) );

id f($w) = ....

id g($w) = ....

endwhile;

just to make sure with which match one is working.
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Chapter 6

The dollar variables

In the older versions of FORM there were two types of variables: the preprocessor variables and
the algebraic variables. The preprocessor variables are string variables that are used by the edit
features of the preprocessor to prepare the input for the compiler part of FORM. The algebraic
objects are the expressions and the various algebraic variables like the symbols, functions, vectors
etc. There existed however very few possibilities to communicate from the algebraic level to the
decision taking at the preprocessor level. This has changed dramatically with version 3 and the
introduction of the dollar variables.

Dollar variables are basically (little) expressions that can be used to store various types of
information. They can be used both as preprocessor objects as well as algebraic objects. They can
also be defined and given contents both by the preprocessor and during execution on a term by
term basis. Dollar variables are kept in memory. Hence it is important not to make them too big,
because in that case performance might suffer.

What is a legal name for a dollar variable? Dollar variables have a name that consists of a dollar
sign ($) followed by an alphabetic character and then potentially more alphanumeric characters.
Hence $a and $var and $r4t78y0 are legal names and $1a is not a legal name. The variables do
not have to be declared. However FORM will complain if a dollar variable is being used, before it
has encountered a statement or an instruction in which the variable has been given a value. Hence
giving a variable a value counts at the same time as a declaration.

What can be stored in a dollar variable?

� Algebraic expressions as in $var = (a+b)^2;

� Individual objects like indices, numbers, symbols.

� Zero.

� Parts of a term.

� Argument fields that consist of zero, one or more arguments.

Actually, the parts of a term are treated as a complete term and hence as a special case of an
algebraic expression. Internally they are stored slightly differently for speed, but at the user level
this should not be noticeable. Actually, with the exception of the argument fields, FORM can
convert one type into the other and will try so, depending on the use that is made of the specific
dollar variable. In the case that a variable is used in a way that should not be possible (like the
content of a variable is a symbol, but it is used in a position where an index is expected) there will
be a runtime error.

How is a variable used?
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� As a preprocessor variable. This is done by putting the variable between a pair of ‘’ as in
‘$var’. In this case the regular print routines of FORM make a textual representation of
the variable as it exists at the moment that the preprocessor encounters this object, and this
string is then substituted by the preprocessor as if it were the contents of a preprocessor
variable.

� Like an expression during execution time. This would be the case in the statement

id x = y + $var;

in which $var is substituted in a way that is similar to the substitution of a local expression
F in the statement

id x = y + F;

except for that the dollar variable is always stored in the CPU memory.

� As an algebraic object during execution time. This could be the case with any value of the
variable that is not an expression. An example would be

id f(?a) = f(?a,$var);

in which the dollar variable contains an argument field.

� As an algebraic object in a delayed substitution of a pattern or a special statement. This
may need some clarification. If we have the statement

id f($var) = anything;

the compiler does not substitute the current value of $var. The reason is that $var could
have a different value for each term that runs into this statement, while the compiler compiles
the statement only once. Hence FORM will substitute the value of $var only at the moment
that it will attempt the pattern matching. This is called delayed substitution. If one likes
the compiler to substitute a value, one can basically let the preprocessor take care of this by
typing

id f(‘$var’) = anything;

A similar delayed substitution takes place in statements of the type Trace,$var;.

How does one give a value to a dollar variable?

� In the preprocessor. This is done with an instruction of the type #$var = 0;. This is an
instruction that can run over more than one line. The r.h.s. can be any algebraic expression.
Specifically it can contain dollar variables or local/global expressions. Such expressions are
worked out during the preprocessing. Hence this variable acquires a value immediately.

� During execution when control reaches a statement of the form $var = expression;. Again
the r.h.s. can contain any normal algebraic expression including dollar variables and lo-
cal/global expressions. The r.h.s. will be evaluated and the value will be assigned to $var.
In the case that $var had already a value, the old value will be deleted and the new value
will be ‘installed’.
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� During execution when the dollar variable is assigned the value of a wildcard as in

id f(x?$var) = whatever;

If the function f occurs more than once in a term, $var will have the value of the last match.
In the case that the value of the first match is needed one can use the option ‘once’ in the
id-statement as in

id,once,f(x?$var) = whatever;

In general one can paste the dollar variable to the end of any wildcard description. Hence
one can use id f(x?{1,2,3}$var) = ...; and

id f(x?set[n?$var1]$var2) = ...;

Note the difference between #$a = 0; and $a = 0;. One CANNOT make a wildcard construction
for dollar variables themselves as in id f($var?) = ...;

Dollar variables CANNOT have arguments as in $var(2) or something equivalent. There
is however a solution at the preprocessor level for this by defining individual variables $var1 to
$varn and then using $var‘i’ or ‘$var‘i’’ for some preprocessor variable i. The exception is the
indication of factors when a dollar variable has been factorized (see the #factdollar instruction 3.31
and the factdollar statement 7.57). This is explained later in this chapter and in the chapter about
polynomials 11.

Printing dollar variables:

� In the preprocessor one can use the #write instruction (see 3.68).

� During execution one can use the Print statement (see 7.116).

In both cases one should use the format string. The syntax is described in the chapters on these
statements. The format descriptor of a dollar variable is %$ and this looks after the format string
for the next dollar variable. Of course one can also use the dollar variable as a preprocessor variable
when printing/writing in the preprocessor.

Examples.
Counting terms:

S a,b;

Off statistics;

L F = (a+b)^6;

#$a = 0;

$a = $a+1;

Print " >> After %t we have %$ term(s)",$a;

#write " ># $a = ‘$a’"

># $a = 0

.sort

>> After + a^6 we have 1 term(s)

>> After + 6*a^5*b we have 2 term(s)

>> After + 15*a^4*b^2 we have 3 term(s)

>> After + 20*a^3*b^3 we have 4 term(s)

>> After + 15*a^2*b^4 we have 5 term(s)
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>> After + 6*a*b^5 we have 6 term(s)

>> After + b^6 we have 7 term(s)

#write " ># $a = ‘$a’"

># $a = 7

.end

Maximum power of x in an expression:

S x,a,b;

Off statistics;

L F = (a+b)^4+a*(a+x)^3;

.sort

#$a = 0;

if ( count(x,1) > $a ) $a = count_(x,1);

Print " >> After %t the maximum power of x is %$",$a;

#write " ># $a = ‘$a’"

># $a = 0

.sort

>> After + 3*x*a^3 the maximum power of x is 1

>> After + 3*x^2*a^2 the maximum power of x is 2

>> After + x^3*a the maximum power of x is 3

>> After + 4*a*b^3 the maximum power of x is 3

>> After + 6*a^2*b^2 the maximum power of x is 3

>> After + 4*a^3*b the maximum power of x is 3

>> After + 2*a^4 the maximum power of x is 3

>> After + b^4 the maximum power of x is 3

#write " ># $a = ‘$a’"

># $a = 3

.end

Starting with version 4, FORM has the capability to factorize polynomials (see the chapter on
polynomials 11). One type of objects that can be factorized is the dollar variables. The immediate
question here is how to access the factors. As we mentioned before in this chapter, normally there
is no direct way to use arguments for dollar variables. For the factors however we have a way of
indexing the dollar variables as in $var[1],...,$var[n] when there are n factors. The number of
factors can be obtained as $var[0]. In the index field can only be (nonnegative integer) numbers,
dollar variables or factors of dollar variables that evaluate into (nonnegative integer) numbers.

Symbol x,y;

CFunction f1,f2;

Local F = f1(x^2+2*x*y+y^2)+f1(x^4-y^4);

id f1(x?$x) = f2(x);

FactDollar,$x;

Do $i = 1,$x[0];

Print "In %t factor %$ is %$",$i,$x[$i];

Enddo;

.end

In + f2(y^2 + 2*x*y + x^2) factor 1 is y + x

In + f2(y^2 + 2*x*y + x^2) factor 2 is y + x

In + f2( - y^4 + x^4) factor 1 is - 1
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In + f2( - y^4 + x^4) factor 2 is y - x

In + f2( - y^4 + x^4) factor 3 is y + x

In + f2( - y^4 + x^4) factor 4 is y^2 + x^2

One thing to note is that the use of

f(<$x[1]>,...,<$x[$x[0]]>)

is illegal. $x[0] will be inserted during execution time, while the expansion of the triple dot
operator is done by the preprocessor. Hence we should use ‘$x[0]’ but then $x must be known
and factorized already at compile time.

6.1 Dollar variables in a parallel environment

When FORM is used for parallel processing, either by means of ParFORM or by means of
TFORM, there can be a problem with the dollar variables as in principle there is a central admin-
istration and dollar variables that are defined during running will in general have the last assigned
value. In a parallel environment this can be nondeterministic. Look for instance at the following
example:

S x,a,b;

CF f;

L F = f(a+b) + f(a+2*b);

.sort

id f(x?$x) = f(x);

Multiply,$x;

Print;

.end

Usually this program will give the ’correct’ answer, but in principle one thread could define $x

and then the next thread could overwrite this value before the first thread has used it. This is
serious. Hence FORM will veto the use of multiple threads/processors for modules in which dollar
variables obtain values during the execution of the program, unless the user can give FORM more
information about the use of the dollar variables. In the above case the value of $x will be local to
each term and hence to each thread. The value in previous terms is unimportant. We can tell this
to FORM with a variety of the moduleoption statement (see 7.91). This would be:

S x,a,b;

CF f;

L F = f(a+b) + f(a+2*b);

.sort

id f(x?$x) = f(x);

Multiply,$x;

Print;

ModuleOption,local,$x;

.end

In this case FORM makes at the start of the execution of the module a copy of whatever value
$x has at that moment for each thread/processor (in this case no value yet and hence it gets set
to zero) and then each thread/processor uses its own copy during execution. After the module has
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been completed the local copies are removed and the original global value is accessible again. This
way execution will be safe in a parallel environment.

There are more cases that FORM can handle in a parallel environment. These are also options
in the moduleoption statement:

ModuleOption,maximum,$a;

ModuleOption,minimum,$b;

ModuleOption,sum,$c;

Here we say that $a is accumulating a maximum numerical value, $b collects a minimum numerical
value and $c is a numerical sum. In all three cases there is a central administration and the use
of the variables has to be blocked for other threads/processors during the updating of the values.
Sometimes that can be efficient, but in other programs that may actually make them slower. One
should experiment. A sample program is given below:

S a1,...,a10;

L F = (a1+...+a10)^3;

.sort

#$c = 0;

Print +f "<%w> %t";

Multiply,(a1+...+a10);

$c = $c+1;

ModuleOption,sum,$c;

.sort

#message $c = ‘$c’

#$max = 0;

#$min = 10;

if ( count(a1,1) > $max ) $max = count_(a1,1);

if ( count(a4,1) < $min ) $min = count_(a4,1);

ModuleOption,maximum,$max;

ModuleOption,minimum,$min;

.sort

#message $max = ‘$max’

#message $min = ‘$min’

.end

The print statement is showing which thread is dealing with which term.
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Chapter 7

Statements

7.1 abrackets, antibrackets

Type Output control statement
Syntax ab[rackets][+][-] <list of names>;

antib[rackets][+][-] <list of names>;
See also bracket (7.11) and the chapter on brackets (9)

This statement does the opposite of the bracket statement (see 7.11). In the bracket statement
the variables that are mentioned are placed outside brackets and inside the brackets are all other
objects. In the antibracket statement the variables in the list are the only objects that are not
placed outside the brackets. For the rest of the syntax, see the bracket statement (section 7.11).

7.2 also

Type Executable Statement
Syntax a[lso] [options] <pattern> = <expression>;
See also identify (7.70), idold (7.72)

The also statement should follow either an id statement or another also statement. The action is
that the pattern matching in the also statement takes place immediately after the pattern matching
of the previous id statement (or also statement) and after possible matching patterns have been
removed, but before the r.h.s. expressions are inserted. It is identical to the idold statement (see
7.72). Example:

id x = cosphi*x-sinphi*y;

also y = sinphi*x+cosphi*y;

The options are explained in the section on the id statement (see 7.70).
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7.3 antiputinside

Type Executable statement
Syntax antiputinside <name of function> [,<antibracket information>];
See also PutInside (7.122)

This statement puts all parts of the term with the exception of the variables in the antibracket
information inside a function argument. The function must be a regular function (hence no tensor
or table which are special types of functions). The antibracket information should adhere to the
syntax of the bracket statement (7.11, 7.1) and all occurrences of all variables with the exception
of the antibracket variables will be put inside the function. The coefficient will also be put inside
the function.

7.4 antisymmetrize

Type Executable statement
Syntax an[tisymmetrize] {<name of function/tensor> [<argument specifications>];}
See also symmetrize (7.145), cyclesymmetrize (7.29), rcyclesymmetrize (7.124)

The argument specifications are explained in the section on the symmetrize statements (see 7.145).

The action of this statement is to anti-symmetrize the (specified) arguments of the functions that
are mentioned. This means that the arguments are brought to ‘natural order’ in the notation of
FORM and each exchange of arguments or groups of arguments results in a minus sign in the
coefficient of the term. The ‘natural order’ may depend on the order of declaration of the variables.
If two arguments or groups of arguments that are part in the anti-symmetrization are identical,
the function is replaced by zero.

7.5 apply

Type Executable statement
Syntax apply [”<tablename(s)>”];
See also tablebases (12), apply (12.2)

This statement is explained in the chapter on tablebases.

7.6 argexplode

Type Executable statement
Syntax argexplode [<list of functions>]
See also argimplode (7.7)

See the description of the ArgImplode 7.7 statement.
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7.7 argimplode

Type Executable statement
Syntax argimplode [<list of functions>]
See also argexplode (7.6)

This is a rather specialized statement. It converts one notation of indices, used for harmonic sums,
harmonic polylogarithms and multiple zeta values into its alternative notation. The two notations
are:

Z(0,0,0,1,0,0,-1)

Z(4,-3)

In the first notation the indices can only be 0, 1 and -1. In the second notation there can be no
zeroes. The ‘ArgImplode,Z;’ statement would be equivalent to the statement

repeat id Z(?a,0,x?!{0,0},?b) = Z(?a,x+sig_(x),?b);

and takes one from the first notation to the second. The ‘ArgExplode,Z;’ statement is equivalent
to the statement

repeat id Z(?a,x?!{1,0,-1},?b) = Z(?a,0,x-sig_(x),?b);

and takes one from the second notation to the first. The reason that these statements have been
built in lies in the fact that for many indices the repeat statements started to become very time-
consuming.
For the harmonic sums, the harmonic polylogarithms and the multiple zeta values one can use the
summer6 and the harmpol packages in the FORM distribution. They are described in the papers

J. A. M. Vermaseren, Harmonic sums, Mellin transforms and integrals, Int. J. Mod. Phys.
A14 (1999) 2037, http://arxiv.org/abs/hep-ph/9806280.

E. Remiddi and J. A. M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A15
(2000) 725, http://arxiv.org/abs/hep-ph/9905237.

7.8 argtoextrasymbol

Type Executable statement
Syntax argtoextrasymbol [tonumber] [<argument specifications>];
See also topolynomial (7.153) and extrasymbols (7.55, 2.11).

Converts function arguments into extra symbols. An argument will be replaced with an extra
symbol. The arguments that have been encountered before are replaced with the same extra
symbols. Unlike the topolynomial statement (7.153), the replacement occurs even for arguments
consisting only of numbers and symbols (including extra symbols).

The tonumber option requests that function arguments are converted to positive integers corre-
sponding to extra symbols. This provides an efficient mapping from any expression (stored as a
function argument) to a number.

The function arguments to be converted can be specified in the same way as the argument statement
(see 7.9).
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7.9 argument

Type Executable statement
Syntax argument [<argument specifications>]

{<name of function/set> [<argument specifications>]};
See also endargument (7.44)

This statement starts an argument environment. Such an environment is terminated by an endargu-
ment statement (see 7.44). The statements between the argument and the endargument statements
will be applied only to the function arguments as specified by the remaining information in the
argument statement. This information is given by:

� No further information: the statements are applied to all arguments of all functions.

� A series of numbers: the statements are applied to the given arguments of all functions.

� A function name (or a set of functions), possibly followed by a series of numbers: the state-
ments are applied to the numbered arguments of the function specified. If a set of functions
was specified, all the functions in the set will be taken. If no numbers are specified, all
arguments of the function (or elements of the set) are taken.

The combination of a function (or set) possibly followed by numbers of arguments, can occur as
many times as needed. The generic numbers of arguments that refer to all functions work in
addition to the numbers specified for individual functions. Example

Argument 2,f,1,{f,f1},3,4;

This specifies the second argument of all functions. In addition the first argument of f will be taken
and then also the third and fourth arguments of f and f1 will be taken.

Argument/endargument constructions can be nested.

7.10 auto, autodeclare

Type Declaration statement
Syntax autodeclare <variable type> <list of variables to be declared>;

auto <variable type> <list of variables to be declared>;

The variable types are

s[ymbol] Declaration of symbols. For options see 7.144.

v[ector] Declaration of vectors. For options see 7.165.

i[ndex] Declaration of indices. For options see 7.76.

i[ndices] Declaration of indices. For options see 7.76.

f[unctions] Declaration of noncommuting functions. For options see 7.97.

nf[unctions] Declaration of noncommuting functions. For options see 7.97.

cf[unctions] Declaration of commuting functions. For options see 7.14.
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co[mmuting] Declaration of commuting functions. For options see 7.14.

t[ensors] Declaration of commuting tensors. For options see 7.148.

nt[ensors] Declaration of noncommuting tensors. For options see 7.105.

ct[ensors] Declaration of commuting tensors. For options see 7.28.

The action of the autodeclare statement is to set a default for variable types. In a statement of the
type

AutoDeclare Symbol a,bc,def;

all undeclared variables of which the name starts with the character a, the string bc or the string
def will be interpreted as symbols and entered in the name tables as such. In the case there are
two statements as in

AutoDeclare CFunction b,d;

AutoDeclare Symbol a,bc,def;

all previously undeclared variables of which the name starts with a, bc or def will be declared as
symbols. All other previously undeclared variables of which the name starts with a b or a d will be
declared as commuting functions. This is independent of the order of the autodeclare statements.
FORM starts looking for the most detailed matches first. Hence the variable defi will match with
the string def first.

It is also allowed to use the properties of the various variables in the autodeclare statement:

AutoDeclare Index i=4,i3=3,i5=5;

This declares all previously undeclared variables of which the name starts with an i to be four
dimensional indices, unless their names start with i3 in which case they will be three dimensional
indices, or their names start with i5 in which case they will be five dimensional indices.

7.11 bracket

Type Output control statement
Syntax b[rackets][+][-] <list of names>;
See also antibracket (7.1), keep (7.82), collect(7.20) and the chapter on brackets (9)

This statement causes the output to be reorganized in such a way that all objects in the ‘list of
names’ are placed outside brackets and all remaining objects inside brackets. This grouping will
remain till the next time that the expression is active and is being manipulated. Hence the brackets
can survive skip (see 7.135), hide (see 7.69) and even save (see 7.130) and load (see 7.85) statements.
The bracket information can be used by the collect (see 7.20) and keep (see 7.82) statements, as
well in r.h.s. expressions when the contents of individual brackets of an expression can be picked
up (see 9).

The list of names can contain names of symbols, vectors, functions, tensors and sets. In addition
it can contain dotproducts. There should be only one bracket or antibracket (see 7.1) statement
in each module. If there is more than one, only the last one has an effect. The presence of a set
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has the same effect as having all the symbolic elements of the set declared in the (anti)bracket
statement.

The presence of a + or − after the bracket (or anti bracket) refers to potential indexing of the
brackets. Usually FORM has the information inside the terms in an expression. If it needs to
search for a particular bracket it does so by starting at the beginning of that expression. This can
be slow. If one likes to access individual brackets, it may be faster to tell FORM to make an index
by putting the + after the bracket or antibracket keyword. For more information, see the chapter
on brackets (see 9). A − indicates that no index should be made. Currently this is the default and
hence there is no need to use this option. It is present just in case the default might be changed
in a future version of FORM (in which FORM might for instance try to determine by itself what
seems best. This option exists for case that the user would like to overrule such a mechanism).

See also the antibracket statement in 7.1.

7.12 break

Type Executable statement
Syntax break;

See also case (7.13), switch (7.143), default(7.31), endswitch (7.50).

When a break statement is reached in a switch construction the next statement to be executed is
the first statement after the corresponding endswitch statement.

7.13 case

Type Executable statement
Syntax case,number;

See also switch (7.143), break (7.12), default(7.31), endswitch (7.50).

The cases in a switch construction are marked by a number. This number must be an integer that
can be represented inside a FORM word. On a 64-bit processor this would be an integer in the
range −231 to 231 − 1. If the dollar variable in the switch statement has the same value as the
integer in the case statement, the next statement to be executed is the first statement after the case
statement. Usually cases are terminated by break statements, but if there is no break statement
’fall through’ may occur in which execution continues with the first statement after the next case
statement or default statement.
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7.14 cfunctions

Type Declaration statement
Syntax c[functions] <list of functions to be declared>;
See also functions (7.64), nfunctions (7.97)

This statement declares commuting functions. The name of a function can be followed by some
information that specifies additional properties of the preceding function, which are the same as
those for functions (see 7.64).

7.15 chainin

Type Executable statement
Syntax Chainin,name of function;
See also chainout (7.16)

Has the same effect as the statement

repeat id f(?a)*f(?b) = f(?a,?b);

if f is the name of the function specified. The chainin statement is just a faster shortcut.

7.16 chainout

Type Executable statement
Syntax Chainout,name of function;
See also chainin (7.15)

Has the same effect as the statement

repeat id f(x1?,x2?,?a) = f(x1)*f(x2,?a);

if f is the name of the function specified. The chainout statement is just a much faster shortcut.

7.17 chisholm

Type Executable statement
Syntax chisholm [options] <spinline indices>;
See also trace4 (7.158) and the chapter on gamma algebra (14)

This statement applies the identity

γaγµγbTr[γµS] = 2γa(S + SR)γb
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in order to contract traces. S is here a string of gamma matrices and SR is the reverse string.
This identity is particularly useful when the matrices γ6 = 1+ γ5 and/or γ7 = 1− γ5 are involved.
The spinline index refers to which trace should be eliminated this way. The options are

symmetrize If there is more than one contraction with other gamma matrices, the
answer will be the sum of the various contractions, divided by the num-
ber of different contractions. This will often result in a minimization of
the number of γ5 matrices left in the final results.

nosymmetrize The first contraction encountered will be taken. No attempt is made to
optimize with respect to the number of γ5 matrices left.

IMPORTANT: the above identity is only valid in 4 dimensions. For more details, see chapter 14
on gamma algebra.

7.18 chop

Type Executable statement
Syntax chop <threshold>;

See chapter 22 on the floating point capability.

7.19 cleartable

Type Declaration statement
Syntax ClearTable [<list of tables>]

This statement clears the tables that are mentioned. Sometimes (sparse) tables can take so much
space that there is no room for new elements, while old elements are not needed any longer. In
that case one can clear the table and start all over again with filling it. It is also useful when one
wants to reuse a table, but now with a different content.

7.20 collect

Type Specification statement
Syntax collect <name of function>;

collect <name of function> <name of other function>;
collect <name of function> <name of other function> <percentage>;

See also bracket (7.11), antibracket (7.1) and the chapter on brackets (9)

Upon processing the expressions (hence expressions in hide as well as skipped expressions do not
take part in this) the contents of the brackets (if there was a bracket or antibracket statement in
the preceding module) are collected and put inside the argument of the named function. Hence if
the expression F is given by

F =

a*(b^2+c)
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+ a^2*(b+6)

+ b^3 + c*b + 12;

the statement

Collect cfun;

will change F into

F = a*cfun(b^2+c)+a^2*cfun(b+6)+cfun(b^3+c*b+12);

The major complication occurs if the content of a bracket is so long that it will not fit inside a
single term. The maximum size of a term is limited by the setup parameter maxtermsize (see 17).
If this size is exceeded, FORM will split the bracket contents over more than one term, in each of
which it will be inside the named function. It will issue a warning that it has done so.

If a second function is specified (the alternative collect function) and if a bracket takes more space
than can be put inside a single term, the bracket contents will be split over more than one term,
in each of which it will be inside the alternative collect function. In this case there is no need for a
warning as the user can easily check whether this has occurred by checking whether the alternative
function is present in the expression.

If additionally a percentage is specified (an integer in the range of 1 to 99) this determines how
big the argument must be as compared to MaxTermSize (see chapter 17 on the setup) before use
is made of the alternate collect function.

7.21 commuteinset

Type Declaration statement
Syntax commuteinset <{list of noncommuting functions/tensors}>;
See also functions (7.64)

This statement allows one or more sets of noncommuting functions and or tensors for its argu-
ment(s). The functions inside each set will commute with each other. It is allowed to have the
same function inside more than one set. For a function to commute with itself (with for instance
different arguments) it needs to be specified twice inside the same set. In that case it is more
efficient to have a separate set with only two arguments. Example:

I i1,...,i10;

F A1,...,A10;

CommuteInSet{A1,A3,A5},{A1,g_},{A1,A1};

L F = A5*A1*A5*A1*A5*A2*A3*A5*A1*A5*A3*A1;

L G = g_(2,i1)*g_(2,i2,i3)*A1(i2)*g_(1,i4)*g_(1,5_,i5,i6)

*A1(i1)*A1(i3)*g5_(1)*A3(i5)*A3(i4)*g5_(1);

Print +f +s;

.end

F =

+ A1*A1*A5*A5*A5*A2*A1*A1*A3*A3*A5*A5;
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G =

+ g_(1,i4,i5,i6)*g_(2,i1,i2,i3)*A1(i1)*A1(i2)*A1(i3)*

A3(i5)*A3(i4)*g_(1,5_);

7.22 commuting

Type Declaration statement
Syntax co[mmuting] <list of functions to be declared>;
See also cfunctions (7.14), functions (7.64)

This statement is completely identical to the cfunction statement (see 7.14).

7.23 compress

Type Declaration statement
Syntax comp[ress] <on/off>;
See also on (7.110), off (7.109)

This statement is obsolete. The user should try to use the compress option of the on (see 7.110)
or the off (see 7.109) statements.

7.24 contract

Type Executable statement
Syntax contract [<argument specifications>];

Statement causes the contraction of pairs of Levi-Civita tensors e_ (see also 8) into combinations of
Kronecker delta’s. If there are contracted indices, and if their dimension is identical to the number
of indices of the Levi-Civita tensors, the regular shortcuts are taken. If there are contracted indices
with a different dimension, the contraction treats these indices temporarily as different and lets
the contraction be ruled by the contraction mechanism of the Kronecker delta’s. In practise this
means that the dimension will enter via δµµ → dim(µ).

In FORM there are no upper and lower indices. Of course the user can emulate those. The contract
statement always assumes that there is a proper distribution of upper and lower indices if the user
decided to work in a metric in which this makes a difference. Note however that due to the fact
that the Levi-Civita tensor is considered to be imaginary, there is usually no need to do anything
special. This is explained in the chapter on functions (see 8).

There are several options to control which contractions will be taken. They are
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Contract; Here only a single pair of Levi-Civita tensors will be contracted. The
pair that is selected by FORM is the pair that will give the smallest
number of terms in their contraction.

Contract <number>; This tells FORM to keep contracting pairs of Levi-Civita tensors until
there are <number> or <number>+1 Levi-Civita tensors left. A common
example is
Contract 0;
which will contract as many pairs as possible.

Contract:<number>; Here the number indicates the number of indices in the Levi-Civita ten-
sors to be contracted. Only a single pair will be contracted and it will
be the pair that gives the smallest number of terms.

Contract:<number>
<number>;

The First number refers to the number of indices in the Levi-Civita
tensors to be contracted. The second number refers to the number of
Levi-Civita tensors that should be left (if possible) after contraction.

Note that the order in which FORM selects the contractions is by looking at which pair will give
the smallest number of terms. This means that usually the largest buildup of terms is at the end.
This is not always the case, because there can be a complicated network of contracted indices.

7.25 copyspectator

Type Definition statement
Syntax copyspectator <exprname> = <spectator>;

See chapter 20 on spectators.

7.26 createspectator

Type Declaration statement
Syntax createspectator <spectatorname>, ”<filename>”;

See chapter 20 on spectators.

7.27 ctable

Type Declaration statement
Syntax ctable <options> <table to be declared>;
See also functions (7.64), table (7.146), ntable (7.104)

This statement declares a commuting table and is identical to the table command (see 7.146) which
has the commuting property as its default.
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7.28 ctensors

Type Declaration statement
Syntax ct[ensors] <list of tensors to be declared>;
See also functions (7.64), tensors (7.148), ntensors (7.105)

This statement declares commuting tensors. It is equal to the tensor statement (see 7.148) which
has the commuting property as its default.

7.29 cyclesymmetrize

Type Executable statement
Syntax cy[clesymmetrize] {<name of function/tensor> [<argument specifications>];}
See also symmetrize (7.145), antisymmetrize (7.4), rcyclesymmetrize (7.124)

The argument specifications are explained in the section on the symmetrize statements (see 7.145).

The action of this statement is to cycle-symmetrize the (specified) arguments of the functions that
are mentioned. This means that the arguments are brought to ‘natural order’ in the notation of
FORM by trying cyclic permutations of the arguments or groups of arguments. The ‘natural order’
may depend on the order of declaration of the variables.

7.30 deallocatetable

Type Declaration
Syntax DeallocateTable,name(s) of sparse table(s);
See also table (7.146), fill (7.59), table bases (12)

Works only for sparse tables. Deallocates all definitions of elements as obtained with ‘Fill’ state-
ments as if there never were any ‘Fill’ statements for the given tables.

This statement exists because sometimes cleaning up big tables is needed when they take too
much memory. This can be the case when a big tablebase has been used.

7.31 default

Type Executable statement
Syntax default;

See also case (7.13), break (7.12), switch(7.143), endswitch (7.50).

This is the default case in a switch construction.
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7.32 delete

Type Specification statement
Syntax delete storage;
See also save (7.130), load (7.85)
Syntax delete extrasymbols;
Syntax delete extrasymbols>number;
See also extrasymbols (7.55)

This statement has currently two varieties. The delete storage clears the complete storage file
and reduces it to zero size. The effect is that all stored expressions are removed from the system.
Because it is impossible to remove individual expressions from the store file (there is no mechanism
to fill the resulting holes) it is the only way to clean up the storage file. If some expressions should
be excluded from this elimination process, one should copy them first into active global expressions,
then delete the storage file, after which the expressions can be written to storage again with a .store
instruction.
The delete extrasymbols variety removes extra symbols from the list. The default is that all extra
symbols are removed, but one can also remove the symbols above a given number as in

#$es = ‘extrasymbols_’;

ToPolynomial;

....some code....

.sort

* now the new extra symbols are not needed anylonger

Delete extrasymbols>‘$es’;

7.33 denominators

Type Executable statement
Syntax denominators functionname;

This statement allows the user to rename all occurrences of the built-in denominator function. This
built-in function is kind of an oddity inside FORM. Denominators are presented by a very special
function which doesn’t really have a name and hence is rather hard to address. In addition there
are special rules connected to denominators. Hence it is usually better to collect denominators
inside functions that have been defined by the user and hence allow the user to manipulate them
at will. Yet, objects can end up inside denominator functions, especially when output from other
programs is read in. Hence this statement allows all occurrences of the denominator function to
be renamed into the function that is given in the statement. This function will work well together
with the PolyRatFun statement in which we define a PolyFun with two arguments of which the
second acts as a denominator and the first as a numerator:

PolyRatFun,rat;

Denominators,den;

id den(x?) = rat(1,x);

For more about this one should consult the part on the PolyRatFun statement (7.114) and the chap-
ter on polynomials (still to be included because the current version can handle only polynomials in
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a single variable and is also not optimized for many occurrences that have identical denominators).

7.34 dimension

Type Declaration statement
Syntax d[imension] <number or symbol>;
See also index (7.76)

Sets the default dimension. This default dimension determines the dimension of the indices that
are being declared without dimension specification as well as the dimension of all dummy indices.
At the moment an index is declared and there is no dimension specification, FORM looks for the
default dimension and uses that. This index will then have this dimension, even when the default
dimension is changed at a later moment. The dummy indices always have the dimension of the
current default dimension. If the default dimension is changed the dimension of all dummy indices
changes with it. Varieties:

Dimension <number>; Declares the number to be the default dimension. The number must
be smaller than 32768 on 32bit architectures or 2147483648 on 64bit
architectures. Negative numbers are not allowed. If one wants to work
with negative dimensions, the practical workaround is to use a symbolic
dimension and later replace that symbol appropriately.

Dimension <symbol>; Symbol must be the name of a symbol, either previously declared or
declarable because of an auto-declaration (see 7.10). Declares the symbol
to be the default dimension.

Dimension
<symbol>:<symbol>;

The symbols must be the names of symbols, either previously declared
or declarable because of an auto-declaration (see 7.10). The first symbol
will be the default dimension. The second symbol will be the first symbol
minus 4. It will be used as such in the trace contractions. See also 7.159
and 7.76.

Examples:

Dimension 3;

Dimension n;

Dimension n:[n-4];

The default dimension in FORM is 4.

7.35 discard

Type Executable statement
Syntax dis[card];

This statement discards the current term. It can be very useful in statements of the type

if ( count(x,1) > 5 ) Discard;
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which eliminates all terms that have more than five powers of x.

7.36 disorder

Type Executable statement
Syntax disorder <pattern> = <expression>;
See also identify (7.70)

This statement is identical to the disorder option of the id statement (see 7.70). It is just a
shorthand notation for ‘id disorder’.

7.37 do

Type Executable statement
Syntax do $loopvar = lowvalue,highvalue{,increment};
See also enddo (7.45)

The syntax is the typical syntax for do-loops. The loop variable has to be a dollar variable. For
parallel performance this variable can be declared local in a moduleoption (see 7.91) statement,
unless it is also used in other ways in the current module. The loop parameters should either be
(short) integers or dollar variables or factors of dollar variables provided they evaluate at run time
to (short) integers. The enddo statement should be in the same module as the do statement. In
addition it should be properly nested with if, repeat, while and argument constructions.
The do-loop facility is in principle superfluous, because the repeat (7.128), if (7.73) and the pattern
matcher can basically do everything the do-loop can do. Sometimes however the do-loop is easier
to program and gives more readable code as shown here:

do $i = 1,5;

id,only,x^$i = f(F[factor_^$i]);

enddo;

versus

id,only,x^n?{1,2,3,4,5} = ff(n);

repeat id ff(n?pos_) = ff(n-1)*f(F[factor_^n]);

id ff(n?neg0_) = 1;

One should note that the do-loop is evaluated at run time. Hence the dollar variables need to be
evaluated at run time as well. Therefore, if it is possible, the preprocessor variety (see 3.20) is
almost always faster in execution as in

#do i = 1,5

id,only,x^‘i’ = f(F[factor_^‘i’]);

#enddo

This can of course not be done in constructions like
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id f1(x?$x) = f2(x);

FactDollar,$x;

Do $i = 1,$x[0];

Multiply f($i,$x[$i]);

Enddo;

because here $x and its factors are only known at run time and may be different for each term.

7.38 drop

Type Specification statement
Syntax drop;

drop <list of expressions>;
See also ndrop (7.95)

In the first variety this statement eliminates all expressions from the system. In the second variety
it eliminates only the expressions that are mentioned from the system. All expressions that are to
be dropped can still be used in the r.h.s. of other expressions inside the current module. Basically
the expressions to be dropped are not treated for execution and after the module has finished
completely they are removed. See also the ndrop statement 7.95.

7.39 dropcoefficient

Type Executable statement
Syntax DropCoefficient;

This statement replaces the coefficient of the current term by one. In principle it has the same
effect as

Multiply 1/coeff_;

but there is always the philosophical issue what is the coefficient once one enters function arguments.
Inside an Argument/EndArgument environment this statement would drop the coefficient of the
terms inside the argument.

7.40 dropsymbols

Type Executable statement
Syntax DropSymbols;

This statement removes all symbols from a term. It has the same effect as

id,many,x?^n? = 1;
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(x and n are symbols) except for that it is much faster.

7.41 else

Type Executable statement
Syntax else;
See also if (7.73), elseif (7.42), endif (7.46)

To be used in combination with an if statement (see 7.73). The statements following the else
statement until the matching endif statement (see 7.46) will be executed for the current term if the
conditions of the matching proceeding if statement and/or all corresponding elseif statements (see
7.42) are false. If any of the conditions of the matching proceeding if or elseif statements are true
the statements following the else statement will be skipped.

7.42 elseif

Type Executable statement
Syntax elseif ( <condition> );
See also if (7.73), else (7.41), endif (7.46)

Should be proceeded by an if statement (see 7.73) and followed at least by a matching endif
statement (see 7.46). If the conditions of the proceeding matching if statement and all proceeding
matching elseif statements are false the condition of this elseif statement will be evaluated. If it
is true, the statements following it until the next matching elseif, else or endif statement will be
executed. If not, control is passed to this next elseif, else or endif statement. The syntax for the
condition is exactly the same as for the condition in the if statement.

7.43 emptyspectator

Type Specification statement
Syntax emptyspectator <spectator>;

See chapter 20 on spectators.

7.44 endargument

Type Executable statement
Syntax endargument;
See also argument (7.9)
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Terminates an argument environment (see 7.9). The argument statement and its corresponding
endargument statement must belong to the same module. Argument environments can be nested
with all other environments.

7.45 enddo

Type Executable statement
Syntax enddo;
See also do (7.37)

See the do statement (7.37).

7.46 endif

Type Executable statement
Syntax endif;
See also if (7.73), elseif (7.42), else (7.41)

Terminates an if construction (see 7.73, 7.42 and 7.41). If should be noted that if constructions
can be nested.

7.47 endinexpression

Type Executable statement
Syntax endinexpression;
See also inexpression(7.77)

Only to be used in combination with the inexpression statement. The combination

InExpression,expr;

Statements;

EndInExpression;

is a more readable version of the construction

if ( expression(expr) );

Statements;

endif;
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7.48 endinside

Type Executable statement
Syntax endinside;
See also inside (7.79) and the chapter on $-variables (6)

Terminates an ‘inside’ environment (see 7.79) which is used to operate on the contents of $-variables
(see 6).

7.49 endrepeat

Type Executable statement
Syntax endrepeat;
See also repeat (7.128), while (7.166)

Ends the repeat environment. The repeat environment is started with a repeat statement (see
7.128). The repeat and its matching endrepeat should be inside the same module. Repeat envi-
ronments can be nested with all other environments (and other repeat environments).

7.50 endswitch

Type Executable statement
Syntax endswitch;

See also case (7.13), break (7.12), default(7.31), switch (7.143).

Ends a switch construction. It collects the various cases, puts them in order and decides whether
the lookup of cases should be done by means of a jumptable, or by binary searching. The ratio
(spread in cases)/(number of cases) determines whether a jumptable is constructed. The default
value below which a jumptable is constructed is 4. This value can be changed in the setups (see
the section on the setups 17) with the variable jumpratio.

7.51 endterm

Type Executable statement
Syntax endterm;
See also term (7.149), sort (7.136)

Terminates a term environment (see 7.149). Term environments can be nested with other term
environments and with other environments in general. The whole environment should be part of
one single module. See also 7.136.
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7.52 endwhile

Type Executable statement
Syntax endwhile;
See also while (7.166), repeat (7.128)

Terminates a while environment (see 7.166). The while statement and its corresponding endwhile
statement must be part of the same module.

7.53 evaluate

Type Executable statement
Syntax evaluate [<function(s)>][,<symbol(s)>];

See chapter 22 on the floating point capability.

7.54 exit

Type Executable statement
Syntax exit [”<string>”];
See also setexitflag (7.133)

Causes execution to be aborted immediately. The string will be printed in the output. This can
be used to indicate where FORM ran into the exit statement.

7.55 extrasymbols

Type Declaration statement
Syntax extrasymbols,array|vector|underscore,name;
See also ToPolynomial (7.153), FromPolynomial (7.63), ArgToExtraSymbol (7.8)

and extra symbols (2.11).

Starting with version 4.0 of FORM some built in operations or statements can only deal with
symbols and numbers. Examples of this are factorization (7.56) (which uses the topolynomial facil-
ities automatically) and output simplification (see the Format statement 7.62). The ToPolynomial
statement takes each term, looks for objects that are not symbols to positive powers and replaces
them by symbols. If the object has been encountered before the same symbol will be used, otherwise
a new symbol will be defined. The object represented by the ‘extra symbol’ is stored internally and
can be printed if needed with the %X option in the #write instruction (3.68). The representation
of the extra symbols is by default the name Z followed by a number and an underscore character.
If another name is desired this should be specified in an ‘ExtraSymbols’ statement. The name
given may contain only alphabetic characters! Because some compilers do not like the underscore
character, there is an alternative notation for the extra symbols. This is just for cosmetic reasons
and one cannot feed these symbols into the compiler this way. This is with an array notation. The
statement
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ExtraSymbols,array,Ab;

would cause the second extra symbol to be printed as Ab(2). The total number of defined extra
symbols is given by the built in symbol extrasymbols . The option vector in the ExtraSymbols
statement is identical to the option array and the option underscore reverts the notation back to
the default notation with the trailing underscore.

7.56 factarg

Type Executable statement
Syntax factarg options {<name of function/set> [<argument specifications>]};
See also splitarg (7.137)

Splits the indicated function arguments into individual factors. The argument specifications are as
in the splitarg statement (see 7.137). There are a few extra options:
(0) Eliminates the coefficient of the term in the argument. Similar to Normalize,(0),....

(1) The coefficient of the term and its sign are pulled out separately.

(-1) The coefficient is pulled out with its sign.

In the case of the above options only the coefficient is treated. When these options are not used
the whole term is treated as in:

Symbols a,b,c;

CFunctions f,f1,f2,f3;

Local F = f(-3*a*b)+f(3*a*b)

+f1(-3*a*b)+f1(3*a*b)

+f2(-3*a*b)+f2(3*a*b)

+f3(-3*a*b)+f3(3*a*b);

FactArg,f;

Factarg,(0),f1;

Factarg,(1),f2;

Factarg,(-1),f3;

Print;

.end

F =

f(a,b,-1,3) + f(a,b,3) + 2*f1(a*b) + f2(a*b,-1,3) + f2(a*b,3)

+ f3(a*b,-3) + f3(a*b,3);

When no extra options are used, starting with version 4.0, the whole argument is factorized over
the rationals. This means that

f(x^2+2*x*y+y^2) --> f(y + x,y + x,1)

It should be noticed that FORM can although the internal algorithms can only factorize expressions
with numbers and symbols, FORM redefines all non-symbol objects temporarily into symbols and
at the end substitutes them back. This is done with a mechanism that is similar to that of the
ToPolynomial statement.
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See also the On OldfactArg; and Off OldFactArg statements for a compatibility mode with
versions before version 4.0.

7.57 factdollar

Type Executable statement
Syntax factdollar <name of dollar variable>;
See also the chapter on polynomials 11.

The FactDollar statement will factorize a dollar expression. If the dollar expression was already
factorized the old factors will be removed first. Unlike expressions (see 7.58) where only either the
expanded or the factorized version exists, with dollar expressions we have both versions simultane-
ously. This means that one can refer to the complete dollar in its unfactorized form and its factors.
The factors are indicated between braces as in $x[1] which would be the first factor. The number
of factors of $x is given by $x[0]. One can also obtain the number of factors of a dollar variable
with the numfactors function (see 8.50).
The index indicating the number of the factor can be a nonzero integer, no greater than the
number of factors, or (a factor of) a dollar variable that evaluates into such a number. Composite
expressions are not allowed. They should be worked out first in a separate dollar variable, after
which this dollar variable can then be used as a factor indicator.

7.58 factorize

Type Output control statement
Syntax factorize {<name of expression(s)>};
See also the chapter on polynomials 11.

If no expressions are mentioned all expressions will be affected by the action of this statement. One
may exclude certain expressions with the nfactorize statement (see 7.96). If one or more expressions
are mentoned they will be added to the list of expressions that will be affected.
The statement causes the output expression(s) that is/are marked as such to be factorized after
they have been processed and already written to the output. This means that each expression,
after having been written, is read again and factorized. Then the factorized result is written over
the original output. After that FORM will start executing the statements of the current module
on the next expression, sort it, write it to output, and if necessary read it again and factorize it.
Expressions never exists in two varieties as the dollar variable that have been factorized. It is
either unfactorized (default) or factorized. An expression remains factorized until an UnFactorize
statement is encountered that mentions that this expression should be brought to unfactorized
representation (see also UnFactorize 7.162 and NunFactorize 7.106).
One should realize that factorization of complicated expressions can be a rather costly operation.
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7.59 fill

Type Declaration statement
Syntax fill <tableelement> = <expression> [,<moreexpressions>];
See also table (7.146), fillexpression (7.60), printtable (7.118)

The standard way to define elements of a table. In the left hand side one specifies the table element
without the extra function arguments that could potentially occur (see 7.146). In the right hand
side one specifies what the table element should be substituted by. Example:

Table tab(1:2,1:2,x?);

Fill tab(1,1) = x+y;

Fill tab(2,1) = (x+y)^2;

Fill tab(1,2) = tab(1,1)+y;

Fill tab(2,2) = tab(2,1)+y^2;

The first fill statement is a bit like a continuous attempt to try the substitution

id tab(1,1,x?) = x+y;

The last two fill statements show that one could use the table recursively. If a real loop occurs the
program may terminate due to stack overflow.
It is possible to define several table elements in one statement. In that case the various elements
are separated by commas. The last index is the first one to be raised. This means that in the above
example one could have written:

Table tab(1:2,1:2,x?);

Fill tab(1,1) = x+y,tab(1,1)+y,(x+y)^2,tab(2,1)+y^2;

One warning is called for. One should avoid using expressions in the right hand side of fill state-
ments:

Table B(1:1);

Local dummy = 1;

.sort

Fill B(1) = dummy;

Drop dummy;

.sort

Local F = B(1);

Print;

.end

In the example a crash will result, because when we use the table element the expression dummy
doesn’t exist anymore. In a fill statement the r.h.s. is not expanded. Hence it keeps the reference
to the expression dummy. When the table element is used the reference to the expression dummy
is inserted and expanded. Hence one obtains the contents of dummy that exist at the moment of
use. This is illustrated in the following example:

Table B(1:1);

Local dummy = 1;
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.sort

Fill B(1) = dummy;

.sort

Local F = B(1);

Print;

.sort

Drop;

.sort

Local dummy = 2;

.sort

Local F = B(1);

Print;

.end

The final value of F will be 2, not 1.
A way to get around this problem is to force the evaluation of the table definition by using dollar
variables:

Table B(1:1);

Local dummy = 1;

.sort

#$value = dummy;

Fill B(1) = ‘$value’;

Drop dummy;

.sort

Local F = B(1);

Print;

.end

Here we use the character representation of the contents of the dollar variable to obtain an expres-
sion that doesn’t need any further evaluation. If we would put

fill B(1) = $value;

a reference to the dollar variable would be inserted and it would only be evaluated at use again.
In principle this could cause similar problems.
Not dropping the expression dummy can sometimes give the correct result, but is potentially still
unsafe.

Table B(1:1);

Local u = 2;

Local dummy = 1;

.sort

Fill B(1) = dummy;

Drop dummy;

.sort

Local v = 5;

Local F = B(1);

Print;

.end
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Here the answer will be 5, because after u has been dropped the expressions will be renumbered.
Hence now dummy becomes the first expression, and eventually v becomes the second expression.
The references in the table elements are not renumbered. Hence the r.h.s. of B(1) keeps pointing
at the second expression, which at the moment of application has the value 5. One can see now
also why the original example crashes. First dummy was the first expression and at the moment of
application F is the first (existing) expression. Hence the substitution of B(1) causes a self reference
and hence an infinite loop. Eventually some buffer will overflow.

7.60 fillexpression

Type Declaration statement
Syntax fillexpression <table> = <expression>(<x1>,...,<xn>);

fillexpression <table> = <expression>(<funname>);
See also table (7.146), fill (7.59) and the table function (8.69)

Used to dynamically load a table during runtime. When there are n symbols (here called x1 to xn)
it is assumed that the table is n-dimensional. The expression must previously have been bracketed
in these symbols and each of the brackets has the effect of a fill statement in which the powers of
the x1 to xn refer to the table elements. Brackets that do not have a corresponding table element
are skipped.
In the case that only a function name is specified the arguments of the function refer to the table
elements.

7.61 fixindex

Type Declaration statement
Syntax fi[xindex] {<number>:<value>};
See also index (7.76) and chapter 15.

Defines d_(number,number) = value in which number is the number of a fixed index (hence a
positive short integer with a value less than ConstIndex (see 17). The value should be a short
integer, i.e. its absolute value should be less than 215 on 32 bit computers and less than 231 on
64 bit computers. One can define more than one fixed index in one statement. Before one would
like to solve problems involving the choice of a metric with this statement, one should consult the
chapter on the use of a metric (chapter 15).

7.62 format

Type Output control statement
Syntax fo[rmat] <option>;
See also print (7.116)
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Controls the format for the printing of expressions. There is a variety of options.
<number> Output will be printed using the indicated number of characters per line. The

default is 72. Numbers outside the range 1-255 are corrected to 72. Positive
numbers less than 39 are corrected to 39.

float
[<number>]

Numbers are printed in floating point notation, even though internally they
remain fractions. This is purely cosmetic. If no number is specified the pre-
cision of the output will be 10 digits. If a number is specified it indicates the
number of digits to be used for the precision.

rational Output format is switched back to rational numbers (in contrast to floating
point output). This is the default.

floatprecision
[<off> |<number>]

See chapter 22 on the floating point capability.

nospaces The output is printed without the spaces that make the output slightly more
readable. This gives a more compact output.

spaces The output is printed with extra spaces between the terms and around certain
operators to make it slightly more readable. This is the default.

O0 FORM will turn off output optimization. See the section on output optimiza-
tion 10

O1[options] FORM will use level 1 output optimization. See the section on output opti-
mization 10

O2[options] FORM will use level 2 output optimization. See the section on output opti-
mization 10

O3[options] FORM will use level 3 output optimization. See the section on output opti-
mization 10.

fortran The output is printed in a way that is readable by a fortran compiler. This
includes continuation characters and the splitting of the output into blocks
of no more than 15 continuation lines. This number can be changed with
the setup parameter ContinuationLines (see 17). In addition dotproducts are
printed with the ‘dotchar’ in the place of the period between the vectors. This
dotchar can be set in the setup file (see 17). Its default is the underscore
character.

doublefortran Same as the fortran mode, but fractions are printed with double floating point
numbers, because some compilers convert numbers like 1. into 1.E0. With this
format FORM will force double precision by using 1.D0.

quadruplefortran Same as the fortran mode, but fractions are printed with quadruple floating
point numbers, because some compilers convert numbers like 1. into 1.E0.
With this format FORM will force quadruple precision by using 1.Q0.

quadfortran Same as quadruplefortran.
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fortran90 Similar to the fortran option, but prints the continuation lines according to
the syntax of Fortran 90. If the fortran90 option is followed by a comma and
a string that does not contain white space or other comma’s, this string is
attached to all numbers in coefficients of terms. Example:
Format Fortran90,.0 ki;

which would give in the printout:
+23.0 ki/32.0 ki*a**2&

& +34.0 ki/1325.0 ki*a**3

When there is no string attached it defaults to a period as in the regular
Fortran option.

C Output will be C compatible. The exponent operator (∧) is represented by
the function pow. It is the responsibility of the user that this function will be
properly defined. Dotproducts are printed with the ‘dotchar’ in the place of
the period between the vectors. This dotchar can be set in the setup file (see
17). Its default is the underscore character.

maple Output will be as much as possible compatible with Maple format. It is not
guaranteed that this is perfect.

mathematica Output will be as much as possible compatible with Mathematica format. It
is not guaranteed that this is perfect.

reduce Output will be as much as possible compatible with Reduce format. It is not
guaranteed that this is perfect.

The last few formats have not been tried out extensively. The author is open for suggestions.
normal Will return to the regular FORM formatting mode.

If the statement has no arguments the formatting will be reset to the mode it was in when the
program started.

7.63 frompolynomial

Type Executable statement
Syntax frompolynomial
See also factarg (7.56), ToPolynomial (7.153) and ExtraSymbols (7.55, 2.11).

Starting with version 4.0 of FORM some built in operations or statements can only deal with
symbols and numbers. Examples of this are factorization (7.56) and output simplification (still to
be implemented). Whereas the ToPolynomial statement takes each term, looks for objects that
are not symbols to positive powers and replaces them by symbols the FromPolynomial does the
opposite: it replaces the newly defined extra symbols and replaces them back by their original
meaning.
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7.64 functions

Type Declaration statement
Syntax f[unctions] <list of functions to be declared>;
See also cfunctions (7.14), nfunctions (7.97), tensors (7.148), ctensors (7.28), ntensors (7.105),

table (7.146), ctable (7.27), ntable (7.104)

Used to declare one or more functions. The functions declared with this statement will be noncom-
muting. For commuting functions one should use the cf[unctions] statement (see 7.14). Functions
can have a number of properties that can be set in the declaration. This is done by appending the
options to the name of the function. These options are:
name#r The function is considered to be a real function (default).

name#c The function is considered to be a complex function. This means that
internally two spaces are reserved. One for the variable name and one
for its complex conjugate name#.

name#i The function is considered to be imaginary.

name(s[ymmetric]) The function is totally symmetric. This means that during normaliza-
tion FORM will order the arguments according to its internal notion
of order by trying permutations. The result will depend on the order of
declaration of variables.

name(a[ntisymmetric]) The function is totally antisymmetric. This means that during normal-
ization FORM will order the arguments according to its internal notion
of order and if the resulting permutation of arguments is odd the coef-
ficient of the term will change sign. The order will depend on the order
of declaration of variables.

name(c[yclesymmetric]) The function is cycle symmetric in all its arguments. This means that
during normalization FORM will order the arguments according to its
internal notion of order by trying cyclic permutations. The result will
depend on the order of declaration of variables.

name(r[cyclesymmetric)
name(r[cyclic])
name(r[eversecyclic])

The function is reverse cycle symmetric in all its arguments. This means
that during normalization FORM will order the arguments according
to its internal notion of order by trying cyclic permutations and/or a
complete reverse order of all arguments. The result will depend on the
order of declaration of variables.

name<number
name<=number
name>number
name>=number

The function has a restriction on the number of arguments. If the num-
ber of arguments of an occurrence of the function is not fulfilling the
condition during normalization FORM will set the term equal to zero.

The complexity properties, the symmetric properties and the number of arguments restrictions can
be combined. In that case the complexity properties should come first and the argument restrictions
should come last as in

Function f1#i(symmetric)>=4<8;

Function f1#i<=8;
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7.65 funpowers

Type Declaration statement
Syntax funpowers <on/off>;
See also on (7.110), off (7.109)

This statement is obsolete. The user should try to use the funpowers option of the on (see 7.110)
or the off (see 7.109) statements.

7.66 gfactorized

Type Definition statement
Syntax g[lobal]factorized <option>;
See also the chapter on polynomials 11, the factorize statement 7.58 and the LocalFactorized

statement 7.84.

The syntax is like the syntax of the LocalFactorized (or LFactorized) statement 7.84. The only
difference is that now the expression defined by the statement will become a global expression (see
the Global statement 7.67).

7.67 global

Type Definition statement
Syntax g[lobal] <name> = <expression>;

g[lobal] <names of expressions>;
See also local (7.86)

Used to define a global expression. A global expression is an expression that remains active until
the first .store instruction. At that moment it is stored into the ‘storage file’ and stops being
manipulated. After this it can still be used in the right hand side of expressions and id statements
(see 7.71). Global expressions that have been put in the storage file can be saved to a disk file with
the save statement (see 7.130) for use in later programs.
There are two versions of the global statement. In the first the expression is defined and filled with
a right hand side expression. The left hand side and the right hand side are separated by an =
sign. In this case the expression can have arguments which will serve as dummy arguments after
the global expression has been stored with a .store instruction. Note that this use of arguments
can often be circumvented with the replace function (see 8.60) as in

Global F(a,b) = (a+b)^2;

.store

Local FF = F(x,y);

Local GG = F*replace_(a,x,b,y);

because both definitions give the same result.
The second version of the global statement has no = sign and no right hand side. It can be used
to change a local expression into a global expression.
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7.68 goto

Type Executable statement
Syntax go[to] <label>;
See also label (7.83)

Causes processing to proceed at the indicated label statement (see 7.83). This label statement
must be in the same module.

7.69 hide

Type Specification statement
Syntax hide;

hide <list of expressions>;
See also nhide (7.98), unhide (7.163), nunhide (7.107), pushhide (7.121), pophide (7.115)

In the first variety this statement marks all currently active expressions for being put in hidden
storage. In the second variety it marks only the specified active expressions as such.

If an expression is marked for being hidden, it will be copied to the ‘hide file’, a storage which is
either in memory or on file depending on the combined size of all expressions being hidden. If this
size exceeds the size of the setup parameter scratchsize (see 17) the storage will be on file. If it
is less, the storage will be in memory. An expression that has been hidden is not affected by the
statements in the modules as long as it remains hidden, but it can be used inside other expressions
in the same way skipped expressions (see 7.135) or active expressions can be used. In particular
all its bracket information (see 7.11) is retained and can be accessed, including possible bracket
indexing.

The hide mechanism is particularly useful if an expression is not needed for a large number of
modules. It has also advantages over the storing of global expressions after a .store instruction (see
4), because the substitution of global expressions is slower (name definitions may have changed and
have to be checked) and also a possible bracket index is not maintained by the .store instruction.

Expressions can be returned from a hidden status into active expressions with the unhide statement
(see 7.163). One might want to consult the nhide statement (7.69) as well.

When an expression is marked to be hidden it will remain just marked until execution starts in the
current module. When it is the turn of the expression to be executed, it is copied to the hide file
instead.

Note that a .store instruction will simultaneously remove all expressions from the hide system.
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7.70 identify

Type Executable statement
Syntax id[entify] [<options>] <pattern> = <expression>;
See also also (7.2), idnew (7.71), idold (7.72)

The statement tries to match the pattern. If the pattern matches one or more times, it will be
replaced by the expression in the r.h.s. taking the possible wildcard substitutions into account. For
the description of the patterns, see chapter 5.
The options are

multi This option is for combinations of symbols and dotproducts only and it
does not use wildcard powers. FORM determines how many times the
pattern fits in one pattern matching action. Then the r.h.s. is substituted
to that power. It is the default for these kinds of patterns.

many This is the default for patterns that contain other objects than symbols
and dotproducts. The pattern is matched and taken out. Then FORM
tries again to match the pattern in the remainder of the term. This is
repeated until there is no further match. Then for each match the r.h.s.
is substituted (with its own wildcard substitutions).

select This option should be followed by one or more sets. After the sets the
pattern can be specified. The pattern will only be substituted if none of
the objects mentioned in the sets will be left after the pattern has been
taken out. This holds only for objects ’at ground level’; i.e. the pattern
matcher will not look inside function arguments for this. Note that this
is a special case of the option ’only’.

once The pattern is matched only once, even if it occurs more than once in the
term. The first match that FORM encounters is taken. When wildcards
are involved, this may depend on the order of declaration of variables.
It could also be installation dependent. Also the setting of properorder
(see 7.110 and 7.109) could be relevant. Try to write programs in such
a way that the outcome does not depend on which match is taken.

only The pattern will match only if there is an exact match in the powers of
the symbols and dotproducts present.

ifmatch−> This option should be followed by the name (or number) of a label.
If the pattern matches, the replacement will be made after which the
execution continues at the label.

ifnomatch−> This option should be followed by the name (or number) of a label. If
the pattern does not match, execution continues at the label.

disorder This option is used for products of noncommuting functions or tensors.
The match will only take place if the order of the functions in the match
is different from what FORM would have made of it if the functions
would be commuting. Hence if the functions in the term are in the
order that FORM would give them if they would be commuting (which
depends on the order of declaration) there will be no match. This can
be rather handy when using wildcards as in F(a?)*F(b?).
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all This option is rather special in that it generates all possible matches one
by one. Normally, when there are many possible matches, FORM takes
the first one it encounters. In the case of the all option it will run through
all possible matches and produce all of them. There are however severe
restrictions. First of all, other options are not allowed simultaneously,
although ifmatch−> and ifnomatch−> are allowed because technically
they are no options that concern the pattern matching. In addition it is
not allowed to be in an idold/also statement, and it cannot be followed
by such a statement. Most severely: it can have only functions in the left
hand side. These functions can have all kinds of arguments, but outside
the functions symbols, vectors, dotproducts etc. are not allowed. This is
due to the fact that the backtracking when a wildcard combination fails,
does not include such objects and it is this backtracking mechanism that
is used to generate all matches. For the purpose of the all option tensors
and unsubstituted tables count as functions. It should also be known
that the all option cannot be used in the if(match()) construction. It
would not make sense there anyway.

Example:

Vector Q,p1,...,p5,q1,...,q5;

Cfunction V(s),replace;

Format 60;

* This is a t1 topology:

L F = V(Q,p1,p4)*V(p1,p2,p5)*

V(p2,p3,Q)*V(p3,p4,p5);

$t = term_;

id,all,$t*replace_(<p1,p1?>,...,<p5,p5?>) =

$t*replace(<p1,q1>,...,<p5,q5>);

Print +s;

ModuleOption noparallel; * suppresses noparallel warning with TFORM

.end

F =

+ V(Q,p1,p4)*V(Q,p2,p3)*V(p1,p2,p5)*V(p3,p4,p5)*

replace(p1,q1,p2,q2,p3,q3,p4,q4,p5,q5)

+ V(Q,p1,p4)*V(Q,p2,p3)*V(p1,p2,p5)*V(p3,p4,p5)*

replace(p2,q1,p1,q2,p4,q3,p3,q4,p5,q5)

+ V(Q,p1,p4)*V(Q,p2,p3)*V(p1,p2,p5)*V(p3,p4,p5)*

replace(p3,q1,p4,q2,p1,q3,p2,q4,p5,q5)

+ V(Q,p1,p4)*V(Q,p2,p3)*V(p1,p2,p5)*V(p3,p4,p5)*

replace(p4,q1,p3,q2,p2,q3,p1,q4,p5,q5)

;

This program produces all renumberings of the momenta in the t1 topology that produce the same
topology. The interesting thing here is that one does not have to know the topology to produce all
topologically equivalent terms.

There are two options in the id,all statement:
all(n[ormalize]) Here the final answer is divided by the number of matches. In the

example above that would be 4.
all(<number>)
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The number between the parentheses will be the maximum number of
matches allowed. This means that once this number is reached, no
further matches are produced.

7.71 idnew

Type Executable statement
Syntax idn[ew] [<options>] <pattern> = <expression>;
See also identify (7.70), also (7.2), idold (7.72)

This statement and its options are completely identical to the regular id or identify statement (see
7.70).

7.72 idold

Type Executable statement
Syntax ido[ld] [<options>] <pattern> = <expression>;
See also identify (7.70), also (7.2), idnew (7.71)

This statement and its options are completely identical to the regular also statement (see 7.2). The
options are described with the id or identify statement (see 7.70).

7.73 if

Type Executable statement
Syntax if ( <condition> );

if ( <condition> ) <executable statement>
See also elseif (7.42), else (7.41), endif (7.46)

Used for executing parts of code only when certain conditions are met. Works together with the
else statement (see 7.41), the elseif statement (see 7.42) and the endif statement (see 7.46). There
are two versions. In the first the if statement must be accompanied by at least an endif statement.
In that case the statements between the if statement and the endif statement will be executed if
the condition is met. It is also possible to use elseif and else statements to be more flexible. This
is done in the same way as in almost all computer languages.
In the second form the if statement does not terminate with a semicolon. It is followed by a single
regular statement. No endif statement should be used. The single statement will be executed if
the condition is met.
The condition in the if statement should be enclosed by parentheses. Its primary components are:
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count() Returns an integer power counting value for the current term. Should have
arguments that come in pairs. The first element of the pair is a variable.
The second is its integer weight. The types of variables that are allowed are
symbols, dotproducts, functions, tensors, tables and vectors. The weights can
be positive as well as negative. They have to be short integers (Absolute value
< 215 on 32 bit computers and < 231 on 64 bit computers). The vectors can
have several options appended to their name. This is done by putting a +
after the name of the vector and have this followed by one or more of the
following letters:
v Loose vectors with an index are taken into account.
d Vectors inside dotproducts are taken into account.
f Vectors inside tensors are taken into account.
?set The set should be a set of functions. Vectors inside the functions

that are members of the set are taken into account. It is assumed
that those functions are linear in the given vector

When no options are specified the result is identical to +vfd.

match() The argument of the match condition can be any left hand side of an id
statement, including options as once, only, multi, many and select (see 7.71).
The id of the id statement should not be included. FORM will invoke the
pattern matcher and see how many times the pattern matches. This number
is returned. In the case of once or only this is of course at most one.

expression() The argument(s) of this condition is/are a list of expressions. In the case that
the current term belongs to any of the given expressions the return value is 1.
If it does not belong to any of the given expressions the return value is 0.

occurs() The argument(s) of this condition is/are a list of variables. In the case that
any of the variables occurs inside the current term (including inside function
arguments) the return value is 1. Otherwise the return value is zero.

findloop() The arguments are as in the replaceloop statement (see 7.129) with the excep-
tion of the outfun which should be omitted. If FORM detects an index loop
in the current term that fulfils the specified conditions the return value is 1.
It is 0 otherwise.

multipleof() The argument should be a positive integer. This object is to be compared
with a number (could be obtained from a condition) and if this number is an
integer multiple of the argument there will be a match. If should be obvious
that such a compare only makes sense for the == and != operators.

<integer> To be compared either with another number, the result of a condition or a
multipleof object.

coefficient Represents the coefficient of the current term.

$-variable Will be evaluated at runtime when the if statement is encountered. Should
evaluate into a numerical value. If it does not, an error will result.

All the above primary components result in numerical objects. Such objects can be compared to
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each other in structures of the type <obj1> <operator> <obj2>. The result of such a compare is
either true (or 1) or false (or 0). The operators are:
> Results in true if object 1 is greater than object 2.

< Results in true if object 1 is less than object 2.

= Same as ==.

== Results in true if both objects have the same value.

>= Results in true if object 1 is greater than or equal to object 2.

<= Results in true if object 1 is less than or equal to object 2.

! = Results in true if object 1 does not have the same value as object 2.

If the condition for true is not met, false is returned. Several of the above compares can be
combined with logical operators. For this it is necessary to enclose the above compares within
parentheses. This forces FORM to interpret the hierarchy of the operators properly. The extra
logical operators are
|| The or operation. True if at least one of the objects 1 and 2 is true (or nonzero).

False or zero if both are false or zero.

&& The and operation. True if both the objects 1 and 2 are true (or nonzero). False or
zero if at least one is false or zero.

Example:

if ( ( match(f(1,x)*g(?a)) && ( count(x,1,v+d,1) == 3 ) )

|| ( expression(F1,F2) == 0 ) );

some statements

endif;

if ( ( ( match(f(1,x)*g(?a)) == 0 ) && ( count(x,1,v+d,1) == 3 ) )

|| expression(F1,F2) );

some statements

endif;

We see that match() is equivalent to ( match() != 0 ) and something similar for expression().
This shorthand notation can make a program slightly more readable.

Warning! The if-statement knows only logical values as the result of operations. Hence the
answer to anything that contains parenthesis (which counts as the evaluation of an expression) is
either true (1) or false (0). Hence the object (5) evaluates to true.

7.74 ifmatch

Type Executable statement
Syntax ifmatch−> <label> <pattern> = <expression>;
See also identify (7.70)

This statement is identical to the ifmatch option of the id statement (see 7.70). Hence

ifmatch-> ....

is just a shorthand notation for
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id ifmatch-> ....

7.75 ifnomatch

Type Executable statement
Syntax ifnomatch−> <label> <pattern> = <expression>;
See also identify (7.70)

This statement is identical to the ifnomatch option of the id statement (see 7.70). Hence

ifnomatch-> ....

is just a shorthand notation for

id ifnomatch-> ....

7.76 index, indices

Type Declaration statement
Syntax i[ndex] <list of indices to be declared>;

i[ndices] <list of indices to be declared>;
See also dimension (7.34), fixindex (7.61)

Declares one or more indices. In the declaration of an index one can specify its dimension. This is
done by appending one or two options to the name of the index to be declared:

name=dim The dimension is either a nonnegative integer or a previously declared sym-
bol. If the dimension is zero this means that no dimension is attached to the
index. The consequence is that the index cannot be summed over and index
contractions are not performed for this index. If no dimension is specified the
default dimension will be assumed (see the dimension statement 7.34).

name=dim:ext The dimension is a symbol as above. Ext is an extra symbol which indicates
the value of dim-4. This option is useful when traces over gamma matrices
are considered (see 7.158 and 7.159).

7.77 inexpression

Type Executable statement
Syntax inexpression,name(s) of expression(s);
See also endinexpression (7.47)

The combination
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InExpression,expr;

Statements;

EndInExpression;

is a more readable version of the construction

if ( expression(expr) );

Statements;

endif;

7.78 inparallel

Type Specification statement
Syntax inparallel;

inparallel <list of expressions>;
See also NotInParallel (7.101), ModuleOption (7.91)

This statement is only active in the context of TFORM and ParFORM. It causes (small) ex-
pressions to be executed side by side. Normally the terms of expressions are distributed over the
processors and the expressions are executed one by one. This isn’t very efficient for small expres-
sions because there is a certain amount of overhead. When there are many small expressions, this
statement can cause each expression to be executed by its own processor. A consequence is that
the expressions now can finish in a semi-random order and hence may end up in the output in a
order that is different from when this statement isn’t used. The proper order is restored in the
first module that comes after and that doesn’t use this option. One should be careful using this
statement for big expressions, because in that case the sorting may need sort files and the output
may temporarily need scratch files and the simultaneous use of many files can slow execution down
significantly.
In the case that no expressions are mentioned, all active expressions will be affected. When there
is a list of expressions, only those mentioned will be affected, provided they are active. Several of
these statements will work cumulatively. This statement doesn’t affect expressions that are still to
be defined inside the current module. If it is needed to affect such expressions inside the current
module, one should use the InParallel option of the ModuleOption 7.91 statement. This statement
works independently of the ‘On Parallel;’ 7.110 and ‘Off Parallel;’ 7.109 statements.

7.79 inside

Type Executable statement
Syntax inside <list of $-variables>;
See also endinside (7.48) and the chapter on $-variables (6)

works a bit like the argument statement (see 7.9) but with $-variables instead of with functions.
An inside statement should be paired with an endinside statement (see 7.48) inside the same
module. The statements in-between will then be executed on the contents of the $-variables that
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are mentioned. One should pay some attention to the order of the action. The $-variables are
treated sequentially. Hence, after the first one has been treated its contents are substituted by the
new value. Then the second one is treated. If it uses the contents of the first variable, it will use
the new value. If the first variable uses the contents of the second variable it will use its old value.
Redefining any of the listed $-variables in the range of the ‘inside-environment’ is very dangerous.
It is not specified what FORM will do. Most likely it will be unpleasant.

7.80 insidefirst

Type Declaration statement
Syntax insidefirst <on/off>;
See also on (7.110), off (7.109)

This statement is obsolete. The user should try to use the insidefirst option of the on (see 7.110)
or the off (see 7.109) statements.

7.81 intohide

Type Specification statement
Syntax intohide;

intohide <list of expressions>;
See also hide (7.69)

In the first variety this statement marks all currently active expressions for being put in hidden
storage at the end of the module, after it has been processed. In the second variety it marks only
the specified active expressions as such.

The difference with the hide (7.69) statement is that in the hide statement the expression is copied
immediately into the hide system and it will not be processed in the current module, while in the
intohide statement the expression is first processed and its final output in this module is sent to
the hide system rather than to the regular scratch system. The effect is the same as not putting
the intohide statement in the current module and putting a hide statement in the next, but it saves
one copy operation and it is possibly a bit more economical with the disk space.

Note that a .store instruction will simultaneously remove all expressions from the hide system.

7.82 keep

Type Specification statement
Syntax keep brackets;
See also bracket (7.11), antibracket (7.1) and the chapter on brackets (9)
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The effect of this statement is that during execution of the current module the contents of the
brackets are not considered. The statements only act on the ‘outside’ of the brackets. Only when
the terms are considered finished and are ready for the sorting are they multiplied by the contents
of the brackets. At times this can save much computer time as complicated pattern matching and
multiplications of function arguments with large fractions have to be done only once, rather than
for each complete term separately (assuming that each bracket contains a large number of terms).
There can be some nasty side effects. Assume an expression like:

F = f(i1,x)*(g(i1,y)+g(i1,z));

B f;

.sort

Keep Brackets;

sum i1;

the result will be

F = f(N1_?,x)*g(i1,y)+f(N1_?,x)*g(i1,z);

because at the moment of summing over i1 FORM is not looking inside the brackets and hence it
never sees the second occurrence of i1. There are some beneficial applications of the keep statement
in the ‘mincer’ package that comes with the FORM distribution. In this package the most costly
step was made faster by a significant factor (depending on the problem) due to the keep brackets
statement.

7.83 label

Type Executable statement
Syntax la[bel] <name of label>;
See also goto (7.68)

Places a label at the current location. The name of the label can be any name or positive number.
Control can be transferred to the position of the label by a goto statement (see 7.68) or the ifmatch
option of an id statement (see 7.70). The only condition is that the goto statement and the label
must be inside the same module. Once the module is terminated all existing labels are forgotten.
This means that in a later module a label with the same name can be used again (this may not
improve readability though but it is a good thing when third party libraries are used).

7.84 lfactorized

Type Definition statement
Syntax l[ocal]factorized <name> = <expression>;
See also the chapter on polynomials 11 and the factorize statement 7.58.

Used to define a local expression in factorized notation and keep it that way. The factors are
recognized by multiplication and division signs at lowest bracket level. For the rest the expression
is treated as a regular local expression. Example:

106



Symbols x,y,z;

LocalFactorized F1 = 3*(x+y)*(y+z)*((x+z)*(2*x+1));

LocalFactorized F2 = 3*(x+y)*(y+z)+((x+z)*(2*x+1));

Print;

.end

F1 =

( 3 )

* ( y + x )

* ( z + y )

* ( z + x + 2*x*z + 2*x^2 );

F2 =

( z + 3*y*z + 3*y^2 + x + 5*x*z + 3*x*y + 2*x^2 );

As one can see in the second expression, the plus at ground level makes that there is only one factor.
In the first expression the last factor is seen as a single factor and not two factor2 because of the
extra parentheses. Only parentheses at ground level are used to recognize factors. If one needs
those factors anyway, one should either leave away those parentheses or use an extra Factorize
statement to have FORM refactorize the expression.

7.85 load

Type Declaration statement
Syntax loa[d] <filename> [<list of expressions>];
See also save (7.130), delete (7.32)

Loads a previously saved file (see 7.130). If no expressions are specified all expressions in the file
are put in the storage file and obtain the status of stored global expressions. If a list of expressions
is specified all those expressions are loaded and possible other expressions are ignored. If a specified
expression is not present, an error will result. If one does not know exactly what expressions are
present in a file one could load the file without a list of expressions, because FORM will list all
expressions that it encountered.

7.86 local

Type Definition statement
Syntax l[ocal] <name> = <expression>;

l[ocal] <names of expressions>;
See also global (7.67)

Used to define a local expression. A local expression is an expression that will be dropped when a
.store instruction is encountered. If this is not what is intended one should use global expressions
(see 7.67). The statement can also be used to change the status of a global expression into that of
a local expression. In that case there is no = sign and no right hand side.
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7.87 makeinteger

Type Executable statement
Syntax makeinteger [<argument specifications>]

{<name of function/set> [<argument specifications>]};
See also normalize (7.100)

Normalizes the indicated argument of the indicated functions(s) in such a way that all terms in
this argument have integer coefficients with a their greatest common divider being one. This still
leaves the possibility that the first term of this argument may be negative. If this is not desired
one can first normalize the argument and then make its coefficients integer. The overall factor that
is needed to make the coefficients like described is taken from the overall factor of the complete
term. Example:

S a,b,c;

CF f;

L F = f(22/3*a+14/5*b+18/7*c);

MakeInteger,f;

Print +f;

.end

F =

2/105*f(135*c + 147*b + 385*a);

Note that this feature can be used to make outputs look much more friendly. It can be used in
combination with the AntiBracket statement (7.1) and the function dum (8.14) to imitate a smart
extra level of brackets and make outputs shorter.

It is possible to introduce a scale factor when extracting the coefficient and multiplying it into
the complete term.
MakeInteger,∧ < n >,f; The number n must be an integer (may be negative) and if the coefficient

that is extracted is c the whole term is multiplied by the factor cn.

7.88 many

Type Executable statement
Syntax many <pattern> = <expression>;
See also identify (7.70)

This statement is identical to the many option of the id statement (see 7.70). Hence

many ....

is just a shorthand notation for

id many ....
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7.89 merge

Type Executable statement
Syntax merge,functionname;

merge,once,functionname;
See also shuffle (7.134)

This statement is exactly the same as the shuffle statement (see 7.134).

7.90 metric

Type Declaration statement
Syntax metric <option>;

Remark: statement is inactive. Should have no effect.

7.91 moduleoption

Type Module control statement
Syntax moduleoption <option>[,<value>];
See also polyfun (7.113), processbucketsize (7.119), dollar variables (6.1)

Used to set a mode for just the current module. It overrides the normal setting and will revert to
this normal setting after this module. The settings are:
parallel Allows parallel execution of the current module if all other conditions are right.

This is the default.

noparallel Vetoes parallel execution of the current module.

inparallel This option is more or less equivalent to the InParallel 7.78 statement. The
difference is that because this statement comes at the end of the module, its
effects include also the expressions that have been defined inside the current
module. This is not the case for the InParallel statement. The InParallel
option can be followed by the names of expressions. If no such names are
present, all active expressions are affected. Otherwise only the expressions that
are mentioned are affected. Once this option is mentioned no more options can
be used inside the same ModuleOption statement. This is to avoid potential
confusion that could arise when expressions are used with a name identical to
the name of one of the options.
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notinparallel This option is more or less equivalent to the NotInParallel 7.101 statement.
The difference is that because this statement comes at the end of the mod-
ule, its effects include also the expressions that have been defined inside the
current module. This is not the case for the NotInParallel statement. The
NotInParallel option can be followed by the names of expressions. If no such
names are present, all active expressions are affected. Otherwise only the ex-
pressions that are mentioned are affected. Once this option is mentioned no
more options can be used inside the same ModuleOption statement. This is
to avoid potential confusion that could arise when expressions are used with
a name identical to the name of one of the options.

polyfun Possibly followed by the name of a ‘polyfun’. Is similar to the polyfun state-
ment (see 7.113) but only valid for the current module.

polyratfun Possibly followed by the name of a ‘polyratfun’. Is similar to the polyfun
statement (see 7.114) but only valid for the current module. If there is second
name, it refers to the inverse polyratfun. More complicated options of the
polyratfun statement cannot be used here.

processbucketsize Followed by a number. Similar to the processbucketsize statement (see 7.119)
but only valid for the current module.

local Should be followed by a list of $-variables. Indicates that the contents of the
indicated $-variables are not relevant once the module has been finished and
neither is the term by term order in which the $-variables obtain their value.
In practise each processor/thread will work with its own copy of this variable.

maximum Should be followed by a list of $-variables. Indicates that of the contents of the
indicated $-variables the maximum is the only thing that is relevant once the
module has been finished. The term by term order in which the $-variables
obtain their value is not relevant.

minimum Should be followed by a list of $-variables. Indicates that of the contents of the
indicated $-variables the minimum is the only thing that is relevant once the
module has been finished. The term by term order in which the $-variables
obtain their value is not relevant.

sum Should be followed by a list of $-variables. Indicates that the indicated $-
variables are representing a sum. The term by term order in which the $-
variables obtain their value is not relevant.

The options ‘local’, ‘maximum’, ‘minimum’ and ‘sum’ are for parallel versions of FORM. The
presence of $-variables can be a problem when the order of processing of the terms is not well
defined. These options tell FORM what these $-variables are used for. In the above cases FORM
can take the appropriate action when gathering information from the various processors. This will
allow parallel execution of the current module. If $-variables are used in a module and they are
defined on a term by term basis, the normal action of FORM will be to veto parallel execution
unless it is clear that no confusion can occur. See also chapter 18 on the parallel version and section
6.1 on the dollar variables.
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7.92 modulus

Type Declaration statement
Syntax m[odulus] [option(s)] <value>;

Defines all calculus to be modulus the given integer value, provided this number is positive.
The modulus calculus extends itself to fractions. This means that if the value is not a prime number
division by zero could result. It is the responsibility of the user to avoid such problems.
When the value in the modulus statement is either 0 or 1 the statement would be meaningless. It
is used as a signal to FORM that modulus calculus should be switched off again.

The options are

NoFunctions Modulus calculus is not performed inside function arguments.

AlsoFunctions Modulus calculus is also performed inside function arguments.

CoefficientsOnly Modulus calculus is neither performed inside function arguments nor on powers
of symbols.

PlusMin The values of numbers are reduced to the range (−value+ 1)/2 to (value− 1)/2.

Positive The values of numbers are reduced to the range 0 to value− 1.

NoDollars The modulus calculus is not performed inside dollar variables.

AlsoDollars The modulus calculus is performed also inside dollar expressions.

InverseTable To speed up calculations all inverses are computed by means of a table. If the
modulus value is very big, this table may be too big for the memory. That would result in
an error message.

NoInverseTable No Table of Inverses is constructed. They are calculated whenever needed.

AlsoPowers Reduction is also used on powers of symbols with the relation xmod = x if mod is
the given value

NoPowers No reduction on powers is done.

PrintPowersOf The proper syntax is here printpowersof(generator) in which generator is sup-
posed to be a generator for calculus modulus the given value, which means that all numbers
will be written as a power of the generator. If the number turns out not to be a proper gener-
ator an error will be given. Note that finding the powers is done by means of the construction
of a table. Hence, if the modulus value is very big the table might not fit inside memory.
This will result in an error message.

The default mode is NoFunctions, Positive, NoInverseTable, NoDollars, NoPowers.
The current syntax (version 4.0 and later) differs slightly from the previous syntax. As however

there were many bugs in the old implementation we suspect that a slight change of the options
does not inconvenience any many users.
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7.93 multi

Type Executable statement
Syntax multi <pattern> = <expression>;
See also identify (7.70)

This statement is identical to the multi option of the id statement (see 7.70). Hence

multi ....

is just a shorthand notation for

id multi ....

7.94 multiply

Type Executable statement
Syntax mu[ltiply] [<option>] <expression>;

Statement multiplies all terms by the given expression. It is advisable to use the options when
noncommuting variables are involved. They are:

left Multiplication is from the left.

right Multiplication is from the right.

There is no guarantee as to what the default is with respect to multiplication from the left or from
the right. It is up to FORM to decide what it considers to be most efficient when neither option
is present.

Note that one should not abbreviate this command to ‘multi’, because there is a separate multi
command (see 7.93).

7.95 ndrop

Type Specification statement
Syntax ndrop;

ndrop <list of expressions>;
See also drop (7.38)

In the first variety this statement cancels all drop plans. This means that all expressions
scheduled for being dropped will be restored to their previous status of local or global expressions.
In the second variety this happens only to the expressions that are specified. Example:

Drop;

Ndrop F1,F2;
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This drops all expressions, except for the expressions F1 and F2.

7.96 nfactorize

Type Output control statement
Syntax nfactorize {<name of expression(s)>};
See also the chapter on polynomials 11 and 7.58.

When one uses a factorize (see 7.58) statement without arguments all expressions will be marked for
factorization. If one would like to exclude a few expressions this can be done with the NFactorize
statement. There should be at least one expression mentioned as in:

Factorize;

NFactorize expr12,expr29;

One can also use the Factorize statement with a number of expressions after which the NFactorize
statement can remove some from the list again as in:

Factorize expr1,...,expr100;

NFactorize expr12,expr29;

7.97 nfunctions

Type Declaration statement
Syntax n[functions] <list of functions to be declared>;
See also functions (7.64), cfunctions (7.14)

This statement declares noncommuting functions. It is equal to the function statement (see 7.64)
which has the noncommuting property as its default.

7.98 nhide

Type Specification statement
Syntax nhide;

nhide <list of expressions>;
See also hide (7.69), unhide (7.163), nunhide (7.107), pushhide (7.121), pophide (7.115)

In its first variety this statement undoes all hide plans that exist thus far in the current module.
In the second variety it does this only for the specified active expressions. See the hide statement
in 7.69. Example:

Hide;

Nhide F1,F2;
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Here all active expressions will be transferred to the hide file except for the expressions F1 and F2.

7.99 nintohide

Type Specification statement
Syntax nintohide;

nintohide <list of expressions>;
See also hide (7.69), unhide (7.163), nunhide (7.107), pushhide (7.121), pophide (7.115), intohide (7.81)

In its first variety this statement undoes all intohide plans that exist thus far in the current module.
In the second variety it does this only for the specified active expressions. See the intohide statement
in 7.81. Example:

Intohide;

Nintohide F1,F2;

Here all active expressions will be transferred to the hide file at the end of the current module,
except for the expressions F1 and F2.

7.100 normalize

Type Executable statement
Syntax normalize options {<name of function/set> [<argument specifications>]};
See also argument (7.9), splitarg (7.137), makeinteger (7.87)

Normalizes the indicated arguments of the indicated functions. Normalization means that the
argument will be multiplied by the inverse of its coefficient (provided it is not zero). This holds for
single term arguments. For multiple term arguments the inverse of the coefficient of the first term of
the argument is used. The options and the argument specifications are as in the SplitArg statement
(see 7.137). Under normal circumstances the coefficient that is removed from the argument(s) is
multiplied into the coefficient of the term. This can be avoid with the extra option (0). Hence
Normalize,f; changes f(2*x+3*y) into 2*f(x+3/2*y) but

Normalize,(0),f; changes f(2*x+3*y) into f(x+3/2*y).

A more flexible way to extract the coefficient of the (first) term is by providing a scale factor
as in
Normalize,∧ < n >,f; The number n must be an integer (may be negative) and if the coefficient

of the first term was c the whole term is multiplied by the factor cn.
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7.101 notinparallel

Type Specification statement
Syntax notinparallel;

notinparallel <list of expressions>;
See also InParallel (7.78), ModuleOption (7.91)

This statement is only active in the context of TFORM and ParFORM. It vetoes (small) expres-
sions to be executed side by side. For a complete explanation of this type of running one should
look at the InParallel 7.78 statement. Because the default is that expressions are executed one by
one, the major use of this statement is in constructions like:

InParallel;

NotInParallel F1,F25;

which would first mark all expressions to be executed in simultaneous mode and then make an
exception for F1 and F25.

7.102 nprint

Type Output control statement
Syntax np[rint] <list of names of expressions>;
See also print (7.116)

Statement is used to take expressions from the list of expressions to be printed. When a print
statement is used (see 7.116) without specification of expressions, all active expressions are marked
for printing. With this statement one can remove a number of them from the list.

7.103 nskip

Type Specification statement
Syntax nskip;

nskip <list of expressions>;
See also skip (7.135)

In the first variety it causes the cancellation of all skip plans (see 7.135) for expressions. The status
of these expressions is restored to their previous status (active local or global expressions). In the
second variety this is done for the specified expressions only. Example:

Skip;

Nskip F1,F2;

This causes all active expressions to be skipped except for the expressions F1 and F2.
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7.104 ntable

Type Declaration statement
Syntax ntable <options> <table to be declared>;
See also functions (7.64), table (7.146), ctable (7.27)

This statement declares a noncommuting table. For the rest it is identical to the table command
(see 7.146) which has the commuting property as its default.

7.105 ntensors

Type Declaration statement
Syntax nt[ensors] <list of tensors to be declared>;
See also functions (7.64), tensors (7.148), ctensors (7.28)

This statement declares noncommuting tensors. For the rest it is equal to the tensor statement
(see 7.148) which has the commuting property as its default.
The options that exist for properties of tensors are the same as those for functions (see 7.64).

7.106 nunfactorize

Type Output control statement
Syntax nunfactorize {<name of expression(s)>};
See also the chapter on polynomials 11 and 7.162.

When one uses an UnFactorize (see 7.162) statement without arguments all expressions will be
marked for being unfactorized. If one would like to exclude a few expressions this can be done with
the NUnFactorize statement. There should be at least one expression mentioned as in:

UnFactorize;

NUnFactorize expr12,expr29;

One can also use the UnFactorize statement with a number of expressions after which the NUn-
Factorize statement can remove some from the list again as in:

UnFactorize expr1,...,expr100;

NUnFactorize expr12,expr29;

7.107 nunhide

Type Specification statement
Syntax nunhide;

nunhide <list of expressions>;
See also hide (7.69), nhide (7.98), unhide (7.163), pushhide (7.121), pophide (7.115)
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In its first variety this statement undoes all unhide (see 7.163 and 7.69) plans that the system
has in the current module. In its second variety this happens only with the specified expressions.
Example:

Unhide;

Nunhide F1,F2;

All expressions are taken from the hide system, except for the expressions F1 and F2.

7.108 nwrite

Type Declaration statement
Syntax nw[rite] <keyword>;
See also on (7.110), off (7.109)

This statement is considered obsolete. All its varieties have been taken over by the off statement
(see 7.109) and the on statement (see 7.110). The current version of FORM will still recognize
it, but the user is advised to avoid its usage. In future versions of FORM it is scheduled to be
used for a different kind of writing and hence its syntax may change considerably. The conversion
program conv2to3 should help in the conversion of programs that have been written for version 2.
For completeness we still give the syntax and how it should be converted. The keywords are:

stats Same as: Off stats;

statistics Same as: Off statistics;

shortstats Same as: Off shortstats;

shortstatistics Same as: Off shortstatistics;

warnings Same as: Off warnings;

allwarnings Same as: Off allwarnings;

setup Same as: Off setup;

names Same as: Off names;

allnames Same as: Off allnames;

shortstats Same as: Off shortstats;

highfirst Same as: Off highfirst;
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lowfirst Same as: Off lowfirst;

powerfirst Same as: Off powerfirst;

7.109 off

Type Declaration statement
Syntax off <keyword>;

off <keyword> <option>;
See also on (7.110)

Statement to control settings during execution. Many of these settings replace older statements.
The settings and their keywords are:
allnames Turns the allnames mode off. The default.

allwarnings Turns off the printing of all warnings.

backtrace Disables the printing of a stack trace on termination. This is the default for
normal form builds.

checkpoint Deactivates the checkpoint mechanism. See 4.1.

compress Turns compression mode off.

finalstats Turns off the last line of statistics that is normally printed at the end of the
run (introduced in version 3.2).

flint Disables the interface to FLINT; use FORM’s built-in polynomial routines.

highfirst Puts the sorting in a low first mode.

humanstatistics Disables the printing of human-readable numbers and units in the statistics.
This is the default.

humanstats Same as ‘Off humanstatistics;’

insidefirst Not active at the moment.

lowfirst Leaves the default low first mode and puts the sorting in a high first mode.

names Turns the names mode off. This is the default.
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nospacesinnumbers
Allows very long numbers to be printed with leading blank spaces at the
beginning of a new line. The numbers are usually broken up by placing a
backslash character at the end of the line and then continuing at the next
line. For cosmetic purposes FORM puts usually a few blank spaces at the
beginning of the line. FORM itself can read this but some programs cannot.
This option can be turned off by the ‘on nospacesinnumbers;’ statement. The
printing of the blank characters can be restored by turning this variable off.
See also page 17 for a corresponding variable in the setup file.

oldfactarg
Switches the use of the FactArg statement 7.56 to the new mode of version 4
or later in which expressions in the argument of the mentioned function are
completely factored over the rationals. The default is off.

parallel Disallows the running of the program in parallel mode (only relevant for par-
allel versions of FORM).

powerfirst Puts the sorting back into ‘highfirst’ mode.

processstats Turns the process by process printing of the statistics in ParFORM off. Only
the master process will be printing statistics. Other versions of FORM will
ignore this option.

propercount Turns the propercounting mode off. This means that for the generated terms
in the statistics not only the ‘ground level’ terms are counted but also terms
that were generated inside function arguments.

properorder Turns the properorder mode off. This is the default.

setup Switches off the mode in which the setup parameters are printed. This is the
default.

stats Same as ‘Off statistics’.

statistics Turns off the printing of statistics.

shortstats Same as ‘Off shortstatistics’.

shortstatistics Takes the writing of the statistics back from shorthand mode to the regular
statistics mode in which each statistics messages takes three lines of text and
one blank line.

sortreallocate Turns off the reallocation of the small and large buffer at the end of each
module.

threadloadbalancing

Disables the loadbalancing mechanism of TFORM in parallel mode. In other
versions of FORM this option is ignored.
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threads Disallows multithreaded running in TFORM. In other versions of FORM
this option is ignored.

threadstats Turns off the thread by thread printing of the statistics in TFORM. Only the
master thread will be printing statistics. Other versions of FORM will ignore
this option.

totalsize Switches the totalsize mode off. For a more detailed description of the totalsize
mode, see the ”On TotalSize;” command 7.110.

warnings Turns off the printing of warnings.

wtimestats Disables the wall-clock time in the timing information in the statistics on the
master.

If a description is too short, one should also consult the description in the on statement (see 7.110).

7.110 on

Type Declaration statement
Syntax on <keyword>;

on <keyword> <option>;
See also off (7.109)

New statement to control settings during execution. Many of these settings replace older state-
ments. The settings and their keywords are:
allnames Same as ‘On names’ but additionally all system variables are printed as well.

Default is off.

allwarnings Puts the printing of warnings in a mode in which all warnings, even the very
unimportant warnings are printed.

backtrace Attempt to print a stack trace on termination, to assist with debugging. This
is off by default for normal form builds and on by default for the debug binaries
(vorm, tvorm, parvorm). For best results eu-addr2line or addr2line should be
installed on the system.

checkpoint Activates the checkpoint mechanism that allows for the recovery of a crashed
FORM session. See 4.1 for detailed information.

compress Turns compression mode on. This compression is a relatively simple compres-
sion that hardly costs extra computer time but saves roughly a factor two in
disk storage. The old statement was ‘compress on’ but this should be avoided
in the future. This setting is the default if FORM has not been compiled with
gzip or zstd support.
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compress,gzip This setting is the default, if FORM has been compiled with gzip support but
not with zstd support. This option may be followed by a comma or a space
and a single digit. It activates the gzip compression for the sort file. This
compression can make the intermediate sort file considerably shorter at the
cost of some CPU time. The digit indicates the compression level. Zero means
no compression and 9 is the highest level. The default level is 6. Above that
the compression becomes very slow and doesn’t gain very much extra.

compress,zstd This setting is the default, if FORM has been compiled with zstd support.
This option may be followed by a comma or a space and a single digit. It acti-
vates the zstd compression for the sort file. This compression performs better
than gzip, both in terms of compression/ decompression rates and compression
ratio. The digit indicates the compression level. Zero means no compression
and 9 is the highest level. The default level is 6. Above that the compression
becomes very slow and doesn’t gain very much extra.

fewerstatistics Determines how many of the statistics FORM prints when a small buffer is
full. The keyword can be followed by a positive integer in which case one out
of that many of these statistics will be printed. If no number is given the
default value of 10 is used. When the number that follows is zero, statistics
are never printed when sorting the small buffer.

fewerstats Same as the above fewerstatistics.

finalstats Determines whether FORM prints a final line of run time statistics at the end
of the run. Default is on.

flint Enables the interface to FLINT for polynomial operations. This is the default
if FORM has been compiled with FLINT support. Currently this supports
PolyRatFun (7.114), FactArg (7.56), FactDollar (3.31, 7.57), div (8.13), rem
(8.59), mul (8.46), gcd (8.31), and inverse (8.35). FORM still uses its built-
in routines for Factorize (7.58) and when using Modulus (7.92) mode. Note
that occasionally the overall sign of gcd may differ from that of the built-in
routine.

highfirst In this mode polynomials are sorted in a way that high powers come before
low powers.

humanstatistics If enabled, human-readable numbers and units are included in the statistics
printing. Disabled by default.

humanstats Same as the above humanstatistics.

insidefirst Not active at the moment.

lowfirst In this mode polynomials are sorted in a way that low powers come before
high powers. This is the default.
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names Turns on the mode in which at the end of each module the names of all
variables that have been defined by the user are printed. This is an inspection
mode for debugging by the user. Default is off.

nospacesinnumbers
Makes that very long numbers are printed with no leading blank spaces at
the beginning of a new line. The numbers are usually broken up by placing
a backspace character at the end of the line and then continuing at the next
line. For cosmetic purposes FORM puts usually a few blank spaces at the
beginning of the line. FORM itself can read this but some programs cannot.
Hence this printing of the blank characters can be omitted by turning this
variable on. See also page 17 for a corresponding variable in the setup file.

oldfactarg
Switches the use of the FactArg statement 7.56 to the old mode from before
version 4. This is a compatibility mode to allow oldprograms that rely on a
specific working of the FactArg statement to still run. The default is off.

parallel Allows the running of the program in parallel mode unless other problems
prevent this. This is of course only relevant for parallel versions of FORM.
The default is on.

powerfirst In this mode polynomials are sorted in a way that high powers come before
low powers. The most relevant is however the combined power of all symbols.

processstats Only active for ParFORM. It determines whether all processes print their
run time statistics or only the master process does so. Default is on.

propercount Sets the counting of the terms during generation into ‘propercount’ mode.
This means that only terms at the ‘ground level’ are counted and terms inside
functions arguments are not counted in the statistics. This setting is the
default.

properorder Turns the properorder mode on. The default is off. In the properorder mode
FORM pays particular attention to function arguments when bringing terms
and expressions to normal form. This may cost a considerable amount of extra
time. In normal mode FORM is a bit sloppy (and much faster) about this,
resulting sometimes in an ordering that appears without logic. This concerns
only function arguments! This mode is mainly intended for the few moments
in which the proper ordering is important.

setup Causes the printing of the current setup parameters for inspection. Default is
off.

shortstatistics Puts the writing of the statistics in a shorthand mode in which the complete
statistics are written on a single line only.

shortstats Same as ‘On shortstatistics’.
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sortreallocate Reallocate the small and large buffer (also on the worker threads) at the end
of every module. In some cases this can significantly reduce FORM’s memory
usage as measured by “resident set size”. For programs which consist of a
large number of very quickly-running modules, this can incur a noticable per-
formance penalty. See also #sortreallocate (3.59) for a single-module version
of this feature.

statistics Turns the writing of runtime statistics on. This is the default. It is possible
to change this default with one of the setup parameters in the setup file (see
17).

stats Same as ‘On statistics’.

threadloadbalancing

Causes the load balancing mechanism in TFORM to be turned on or off.
Default is on. Ignored by other versions of FORM.

threads Allows the running of the program in multithreaded mode unless other prob-
lems prevent this. This is of course only relevant for TFORM. Other versions
of FORM ignore this. The default is on.

threadstats Only active for TFORM. It determines whether all threads print their run
time statistics or only the master thread does so. Default is on.

totalsize
Puts FORM in a mode in which it tries to determine the maximum space
occupied by all expressions at any given moment during the execution of the
program. This space is the sum of the input/output/hide scratch files, the sort
file(s) and the .str file. This maximum is printed at the end of the program.
The same can be obtained with the ”TotalSize ON” command in the setup
(see 17) or the -T option in the command tail when FORM is started (see 1).

warnings Turns on the printing of warnings in regular mode. This is the default.

wtimestats Prints the wall-clock time in the timing information in the statistics. The wall-
clock time is indicated by ‘WTime’ instead of ‘Time’ in the normal statistics with
‘shortstatistics’ turned off. For parallel versions, it affects the statistics
only on the master, and does not change those on the workers. The same can
be obtained with the -W option in the command line options of FORM (see
1) or ‘WTimeStats ON’ in the setup (see 17). Default is off.

7.111 once

Type Executable statement
Syntax once <pattern> = <expression>;
See also identify (7.70)
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This statement is identical to the once option of the id statement (see 7.70). Hence

once ....

is just a shorthand notation for

id once ....

7.112 only

Type Executable statement
Syntax only <pattern> = <expression>;
See also identify (7.70)

This statement is identical to the only option of the id statement (see 7.70). Hence

only ....

is just a shorthand notation for

id only ....

7.113 polyfun

Type Declaration statement
Syntax polyfun <name of function>;

polyfun;
See also moduleoption (7.91)

Declares the specified function to be the ‘polyfun’. The polyfun is a function of which the single
argument is considered to be the coefficient of the term. If two terms are otherwise identical the
arguments of their polyfun will be added during the sorting, even if these arguments are little
expressions. Hence

PolyFun acc;

Local F = 3*x^2*acc(1+y+y^2)+2*x^2*acc(1-y+y^2);

will result in

F = x^2*acc(5+y+5*y^2);

Note that the external numerical coefficient is also pulled inside the polyfun.
If the polyfun statement has no argument, FORM reverts to its default mode in which no polyfun
exists. This does not change any terms. If one would like to remove the polyfun from the terms
one has to do that ‘manually’ as in
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PolyFun;

id acc(x?) = x;

in which we assume that previously the function acc had been declared to be the ‘polyfun’.

7.114 polyratfun

Type Declaration statement
Syntax polyratfun <name of function>;

polyratfun <name of function>,<name of function>;
polyratfun;

See also polyfun (7.113), moduleoption (7.91)

Declares the specified function to be the ‘polyratfun’. The polyratfun is a function with two
arguments which together form a rational polynomial that acts as the coefficient of the term. If
two terms are otherwise identical the arguments of their polyratfun will be added during the sorting,
even if these arguments are little nontrivial. Hence

PolyRatFun acc;

Local F = 3*x^2*acc(1+y+y^2,1-y)+2*x^2*acc(1-y+y^2,1+y);

will result in

F = x^2*acc(-y^3-10*y^2-2*y-5,y^2-1);

Note that the external numerical coefficient is also pulled inside the polyratfun.
If the polyratfun statement has no argument, FORM reverts to its default mode in which no
polyratfun exists. This does not change any terms.
The polyratfun has many similarities with the polyfun (see 7.113). At any moment there can only
be at most either one polyfun or one polyratfun. Occurrences of the polyfun or the polyratfun with
the wrong number or the wrong type of arguments are treated as regular functions.
There is a fundamental difference between the polyfun and the polyratfun. The last one is far more
restrictive. It can have only numbers and symbols for its arguments. Also the ordering of the terms
in the arguments can be different. In the polyratfun the terms are always sorted with the highest
power first. In the polyfun the ordering is as with the regular terms. By default the lowest powers
come first as one usually likes for power series expansions.
When two functions are specified, the first will be the PolyRatFun, and the second will be its
inverse as in

PolyRatFun rat,RAT;

in which case

RAT(x1,x2) = rat(x2,x1)

This can be handy when one needs to solve systems of equations by manual interference. In that
case exchanging numerators and denominators can be rather messy, while just changing a name is
far less error-prone.
In many cases it may be very wasteful to keep full track of the complete rational polynomial.
An example is the reduction of a complicated 4-loop massless propagator diagram for which the
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rational polynomials can easily have hundreds of powers of the dimension parameter D = 4−2ϵ. In
the end one has to expand in terms of ϵ although it is not known in advance to how many powers.
For this there are two extra options in the polyratfun statement. The first is

PolyRatFun rat(divergence,x);

in which x is the name of the symbol of interest. In this case the polyratfun keeps only its most
divergent term in this variable x and gives it the coefficient one. The result is that terms will never
cancel and at the end of the calculation one can see how many poles in x were maximally present,
and hence how far one has to expand in x. Because the contents of the polyratfun are extremely
simple, the expensive rational arithmetic is completely absent and things should go rather fast.
In the second option one can specify how far one should expand:

PolyRatFun rat(expand,x,power);

In this case the denominator can only be a polynomial in the variable x. It will be expanded and
multiplied by the numerator and eventually all terms with powers of x that are greater than ’power’
will be discarded. The remaining incidence of the function rat will then have only one argument,
like the polyfun (see 7.113). The advantage is that now the addition of two coefficients is a simple
and straightforward operation that does not need the expensive polynomial GCD computations.
Of course one can program such expansions externally and maybe better suited for the problem at
hand, but using this option of the polyratfun is much faster and gives fewer chances of mistakes.

7.115 pophide

Type Specification statement
Syntax pophide;
See also hide (7.69), nhide (7.98), unhide (7.163), nunhide (7.107), pushhide (7.121)

Undoes the action of the most recent pushhide statement (see 7.121). If there is no matching
pushhide statement an error will result.

7.116 print

Type Print statement
Syntax Print [<options>];

Print {[<options>] <expression>};
Print [<options>] ”<format string>” [<objects>];

See also print[ ] (7.117), nprint (7.102), printtable (7.118)

General purpose print statement. It has three modes. In the first two modes flags are set for
the printing of expressions after the current module has been finished. The third mode concerns
printing during execution. This allows the printing of individual terms or $-variables on a term by
term basis. It should be considered as a useful debugging device.
In the first mode all active expressions are scheduled for printing. The options are
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<filename> The results will be printed to the file. The < and > are mandatory for this option. This

option can only be used in the version that prints out individual terms, i.e. the version with the
format string.
+f Printing will be only to the log file.

-f Printing will be both to the screen and to the log file. This is the default.

+s Each term will start a new line. This is called the single term mode.

+ss Each term will start a new line. In addition each internal group will start a new line. A
group is either a single function or all symbols together, or all dotproducts together, or
all vectors together, or all Kronecker delta’s together.

+sss Like the +ss option but now each symbol and its power will start a new line. The same
for individual dotproducts (and their power), vectors and Kronecker delta’s.

-s Regular term mode. There can be more terms in a line. Linebreaks are placed when the
line is full. The line size is set in the format statement (see 7.62). This is the default.

-ss Lowers the single term mode to -s. If one would like to switch off the single term mode
altogether, -s suffices.

-sss Lowers the single term mode to -ss. If one would like to switch off the single term mode
altogether, -s suffices.

In the second mode one can specify individual expressions to be printed. The options hold for all
the expressions that follow them until new options are specified. The options are the same as for
the first mode.
In the third mode there is a format string as for the printf command in the C programming language.
Of course the control characters are not exactly the same as for the C language because the objects
are different. The special characters are:
%t The current term will be printed at this position including its sign, even if this is a plus

sign.

%T The current term will be printed at this position. If its coefficient is positive no leading
plus sign is printed.

%w The number of the current thread will be printed. This is for TFORM only. In the
sequential version this combination is skipped. The number zero refers to the master
thread.

%W The number of the current thread and its CPU-time at the moment of printing. This is
for TFORM only. In the sequential version this combination is skipped. The number
zero refers to the master thread.

%$ A dollar expression will be printed at this position. The name(s) of the dollar expression(s)
should follow the format string in the order in which they are used in the format string.

%% The character %.

% If this is the last character of the string no linefeed will be printed at the end of the print
command.

\n A linefeed.

Each call is terminated with a linefeed. Example:

Symbols a,b,c;

Local F = 3*a+2*b;

Print "> %T";
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id a = b+c;

Print ">> %t";

Print;

.end

> 3*a

>> + 3*b

>> + 3*c

> 2*b

>> + 2*b

F =

5*b + 3*c;

In the third mode one can also use the +/– f options of the first mode. This should be placed before
the format string as in

Print +f "(%$) %t",$var;

Because of the mixed nature of this statement it can occur in more than one location in the module.

7.117 print[ ]

Type Output control statement
Syntax print[ ] {[<options>] <name>};
See also print (7.116)

Print statement to cause the printing of expressions at the end of the current module. Is like the
first two modes of the regular print statement (see 7.116), but when printing FORM does not
print the contents of each bracket, only the number of terms inside the bracket. Is to be used in
combination with a bracket or an antibracket statement (see 7.11 and 7.1). Apart from this the
options are identical to those of the first two modes of the print statement.

7.118 printtable

Type Print statement
Syntax printtable [<options>] <tablename>;

printtable [<options>] <tablename> > <filename>;
printtable [<options>] <tablename> >> <filename>;

See also print (7.116), table (7.146), fill (7.59), fillexpression (7.60),
and the table function (8.69)

Almost the opposite of a FillExpression statement (see 7.60). Prints the contents of a table ac-
cording to the current format (see 7.62). The output can go to standard output, the log file or a
specified file. The elements of the table that have been defined and filled are written in the form of

128



fill statements (see 7.59) in such a way that they can be read in a future program to fill the table
with the current contents. This is especially useful when the fillexpression statement has been used
to dynamically extend tables based on what FORM has encountered during running. This way
those elements will not have to be computed again in future programs.
The options are
+f Output is to the logfile and not to the screen.

-f Output is both to the logfile and to the screen. This is the default.

+s Output will be in a mode in which each new term starts a new line.

-s Output will be in the regular mode in which new terms continue to be written on the
same line within the limits of the number of characters per line as set in the format
statement. Default is 72 characters per line. This can be changed with the format
statement (see 7.62).

If redirection to a file is specified output will be only to this file. The +f option will be ignored.
There are two possibilities:
> filename The old contents of the file with name ‘filename’ will be overwritten.

>> filename The table will be appended to the file with the name ‘filename’. This allows
the writing of more than one table to a file.

7.119 processbucketsize

Type Declaration statement
Syntax processbucketsize <value>;
See also moduleoption (7.91), setup (17)

Sets the number of terms in the buckets that are sent to the secondary processors in ParFORM,
one of the parallel versions of FORM (see chapter 18). In all other versions this statement is
ignored. See also the moduleoption (7.91) statement and the corresponding parameter for the
setup (17).

7.120 propercount

Type Declaration statement
Syntax propercount <on/off>;
See also on (7.110), off (7.109)

This statement is obsolete. The user should try to use the propercount option of the on (see 7.110)
or the off (see 7.109) statements.
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7.121 pushhide

Type Specification statement
Syntax pushhide;
See also hide (7.69), nhide (7.98), unhide (7.163), nunhide (7.107), pophide (7.115)

Hides all currently active expressions (see 7.69). The pophide statement (see 7.115) can bring them
back to active status again.

7.122 putinside

Type Executable statement
Syntax putinside <name of function> [,<bracket information>];
See also AntiPutInside (7.3)

This statement puts the complete term inside a function argument. The function must be a
regular function (hence no tensor or table which are special types of functions). If there is bracket
information, this information should adhere to the syntax of the bracket statement (7.3) and only
occurrences of the bracket variables will be put inside the function. The coefficient will also be put
inside the function.

7.123 ratio

Type Executable statement
Syntax ratio <symbol1> <symbol2> <symbol3>;

This statement can be used for limited but fast partial fractioning. In the statement

ratio a,b,c;

in which a, b and c should be three symbols FORM will assume that c = b− a and then make the
substitutions

1

am
1

bn
=

m−1∑
i=0

(−1)i
(
n− 1 + i
n− 1

)
1

am−i

1

cn+i
+

n−1∑
i=0

(−1)m
(
m− 1 + i
m− 1

)
1

bn−i

1

cm+i

bn

am
=

n∑
i=0

(
n
i

)
ci

am−n+i
m ≥ n

bn

am
=

m−1∑
i=0

(
n
i

)
cn−i

am−i
+

n−m∑
i=0

(
m− 1 + i
m− 1

)
cibn−m−i m < n

Of course, such substitutions can be made also by the user in a more flexible way. This statement
has however the advantage of the best speed.

Actually the ratio statement is a leftover from the Schoonschip inheritance. For most simple partial
fractioning one could use
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repeat id 1/[x+a]/[x+b] = (1/[x+a]-1/[x+b])/[b-a];

repeat id [x+a]/[x+b] = 1-[b-a]/[x+b];

repeat id [x+b]/[x+a] = 1+[b-a]/[x+a];

or similar constructions. This does not give the speed of the binomials, but it does make the
program more readable and it is much more flexible.

7.124 rcyclesymmetrize

Type Executable statement
Syntax rc[yclesymmetrize] {<name of function/tensor> [<argument specifications>];}
See also symmetrize (7.145), cyclesymmetrize (7.29), antisymmetrize (7.4)

The argument specifications are explained in the section on the symmetrize statement (see 7.145).

The action of this statement is to reverse-cycle-symmetrize the (specified) arguments of the func-
tions that are mentioned. This means that the arguments are brought to ‘natural order’ in the
notation of FORM by trying cyclic and reverse cyclic permutations of the arguments or groups of
arguments. The ‘natural order’ may depend on the order of declaration of the variables.

7.125 redefine

Type Executable statement
Syntax r[edefine] <preprocessor variable> ”<string>”;
See also preprocessor variables in the chapter on the preprocessor (3)

This statement can be used to change the contents of preprocessor variables. The new contents can
be used after the current module has finished execution and the preprocessor becomes active again
for further translation and compilation. This termwise adaptation of the value of a preprocessor
variable can be very useful in setting up multi module loops until a certain condition is not met
any longer. Example:

#do i = 1,1

statements;

if ( condition ) redefine i "0";

.sort

#enddo

As long as there is a term that fulfils the condition the loop will continue. This defines effectively a
while loop (see 7.166) over various modules. Note that the .sort instruction is essential. Note also
that a construction like

if ( count(x,1) > 3 ) redefine i "‘i’+1";

131



is probably not going to do what the user intends. It is not going to count terms with more than
three powers of x. The preprocessor will insert the compile time value of the preprocessor variable
i. If this is 0, then each time a term has more than three powers of x, i will get the string value
0+1. If one would like to do such counting, one should use a dollar variable (see 6).

7.126 removespectator

Type Specification statement
Syntax removespectator <spectator>;

See chapter 20 on spectators.

7.127 renumber

Type Executable statement
Syntax renumber <number>;
See also sum (7.142)

Renumbers the dummy indices. Dummy indices are indices of the type N1_?. Normally FORM
tries to renumber these indices to make the internal representation of a term ‘minimal’. It does
not try exhaustively though. Especially interference with symmetric or antisymmetric functions is
far from perfect. This is due to considerations of economy. With the renumber statement the user
can force FORM to do better. The allowable options are:
0 All exchanges of one pair of dummy indices are tried until all pair exchanges yield no

improvements. This is the default if no option is specified.

1 If there are N sets of dummy indices all N! permutations are tried. This can be very costly
when a large number of indices is involved. Use with care!

7.128 repeat

Type Executable statement
Syntax repeat;

repeat <executable statement>
See also endrepeat (7.49), while (7.166)

The repeat statement starts a repeat environment. It is terminated with an endrepeat statement
(see 7.49). The repeat statement and its matching endrepeat statement should be inside the same
module.

The statements inside the repeat environment should all be executable statements (or print state-
ments) and if any of the executable statements inside the environment has changed the current
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term, the action of the endrepeat statement will be to bring control back to the beginning of the
environment. In that sense the repeat/endrepeat combination acts as

do

executable statements

while any action due to any of the statements

The second form of the statement is a shorthand notation:

repeat;

single statement;

endrepeat;

is equivalent to

repeat single statement;

Particular attention should be given to avoid infinite loops as in

repeat id a = a+1;

A more complicated infinite loop is

repeat;

id S(x1?)*R(x2?) = T(x1,x2,x2-x1);

id T(x1?,x2?,x3?pos_) = T(x1,x2-2,x3-1)*X(x2);

id T(x1?,x2?,x3?) = S(x1)*R(x2);

endrepeat;

If the current term is S(2)*R(2), the statements in the loop do not change it in the end. Yet the
program goes into an infinite loop, because the first id statement will change the term (action) and
the third statement will change it back. FORM does not check that the term is the same again.
Hence there is action inside the repeat environment and hence the statements will be executed again.
This kind of hidden action is a major source of premature terminations of FORM programs.

Repeat environments can be nested with all other environments (and of course also with other
repeat/endrepeat combinations).

7.129 replaceloop

Type Executable statement
Syntax replaceloop <parameters>;
See also the findloop option of the if statement (7.73)

This statement causes the substitution of index loops. An index loop is a sequence of contracted
indices in which the indices are arguments of various instances of the same function and each
contracted index occurs once in one instance of the function and once in another instance of the
function. Such a contraction defines a connection and if a number of such connections between
occurrences of the function form a loop this structure is a candidate for replacement. Examples of
such loops are:
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f(i1,i2,j1)*f(i2,i1,j2)

f(i1,i2,j1)*f(i2,i3,j2)*f(i1,i3,j3)

f(i1,k1,i2,j1)*f(k2,i2,i3,j2)*f(i1,k3,i3,j3)

The first term has a loop of two functions or vertices and the other two terms each define a loop
of three vertices. The parameters are:
<name> The name of the function that defines the ‘vertices’. This must always

be the first parameter.

arguments=number Only occurrences of the vertex function with the specified number of
arguments will be considered. The specification of this parameter is
mandatory.

loopsize=number Only a loop with this number of vertices will be considered.

loopsize=all All loop sizes will be considered and the smallest loop is substituted.

loopsize<number Only loops with fewer vertices than ‘number’ will be considered and the
smallest loop will be substituted.

outfun=<name> Name of an output function in which the remaining arguments of all the
vertex functions will be given. This parameter is mandatory.

include-<name> Name of a summable index that must be one of the links in the loop.
This parameter is optional.

The loopsize parameter is mandatory. Hence one of its options must be specified. The order of the
parameters is not important. The only important thing is that the name of the vertex function
must be first. The names of the keywords may be abbreviated as in

ReplaceLoop f,a=3,l=all,o=ff,i=i2;

although this does not improve the readability of the program. Hence a more readable abbreviated
version might be

ReplaceLoop f,arg=3,loop=all,out=ff,inc=i2;

The action of the statement is to remove the vertex functions that constitute the loop and replace
them by the output function. This outfun will have the arguments of all the vertex functions minus
the contracted indices that define the loop. The order of the arguments is the order in which
they are encountered when following the loop. The order of the arguments in the outfun depends
however on the order in which FORM encounters the vertices. Hence the outfun will often be
cyclesymmetric (see 7.64 and 7.29). If FORM has to exchange indices to make a ‘proper loop’
(i.e. giving relevance to the first index as if it is something incoming and the second index as if it
is something outgoing) and if the vertex function is antisymmetric, each exchange will result in a
minus sign. Examples:

Functions f(antisymmetric),ff(cyclesymmetric);

Indices i1,...,i8;

Local F = f(i1,i4,i2)*f(i5,i2,i3)*f(i3,i1,i6)*f(i4,i7,i8);

ReplaceLoop f,arg=3,loop=3,out=ff;

would result in

-f(i4,i7,i8)*ff(i4,i5,i6)

and
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Functions f(antisymmetric),ff(cyclesymmetric);

Indices i1,...,i9;

Local F = f(i1,i4,i2)*f(i5,i2,i3)*f(i3,i1,i6)*f(i4,i7,i8)

*f(i6,i7,i8);

ReplaceLoop f,arg=3,loop=all,out=ff;

would give

-f(i1,i4,i2)*f(i5,i2,i3)*f(i3,i1,i6)*ff(i4,i6)

because the smallest loop will be taken. A number of examples can be found in the package ‘color’
for group theory invariants that is part of the FORM distribution.
A related object is the findloop option of the if statement (see 7.73). This option just probes
whether a loop is present but makes no replacements.

7.130 save

Type Declaration statement
Syntax sa[ve] <filename> [<names of global expressions>];
See also load (7.85)

Saves the contents of the store file (all global expressions that were stored in .store instructions) to
a file with the indicated name. If a list of expressions is provided only those expressions are saved
and the others are ignored.
Together with the load statement (see 7.85) the save statement provides a mechanism to transfer
data in internal notation from one program to another. It is the preferred method to keep results
of a lengthy job for further analysis without the need for the long initial running time.
In order to avoid confusion .sav is the preferred extension of saved files.

7.131 select

Type Executable statement
Syntax select <list of sets> <pattern> = <expression>;
See also identify (7.70)

This statement is identical to the select option of the id statement (see 7.70). Hence

select ....

is just a shorthand notation for

id select ....
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7.132 set

Type Declaration statement
Syntax set <set to be declared>[(option)]:<element> [<more elements>];

Declares a single set and specifies its elements. Sets have a type of variables connected to them.
There can be sets of symbols, sets of functions, sets of vectors, sets of indices and sets of numbers.
For the purpose of sets tensors and tables count as functions.
There can also be mixed sets of indices and numbers. When a number could be either a fixed
index or just a number FORM will keep the type of the set unfixed. This can change either when
the next element is a symbolic index or a number that cannot be a fixed index (like a negative
number). If the status does not get resolved the set can be used in the wildcarding of both symbols
and indices. Normally sets of numbers can be used only in the wildcarding of symbols.

Currently the only option is the ordered set, indicated by

Set name(ordered):x4,x3,x1,x6,x2;

which would be stored as x1,x2,x3,x4,x6 if that would be the order of declaration.

7.133 setexitflag

Type Executable statement
Syntax setexitflag;
See also exit (7.54)

Causes termination of the program after execution of the current module has finished.

7.134 shuffle

Type Executable statement
Syntax shuffle,functionname;

shuffle,once,functionname;
See also stuffle (7.141)

merge (7.89)

This statement is exactly the same as the merge statement. It takes two occurrences of the men-
tioned function and outputs terms, each with one function in which the two argument lists have
been merged in all different ways, keeping the relative ordering of the two lists preserved. It is the
opposite of the distrib function (see 8.12). Hence

Local F = f(a,b)*f(c,d);

shuffle,f;

will result in

+f(a,b,c,d)+f(a,c,b,d)+f(a,c,d,b)+f(c,a,b,d)+f(c,a,d,b)+f(c,d,a,b)
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One can also obtain the same result with the statements

Multiply,ff;

repeat id f(x1?,?a)*f(x2?,?b)*ff(?c) =

+f(?a)*f(x2,?b)*ff(?c,x1)

+f(x1,?a)*f(?b)*ff(?c,x2);

id f(?a)*f(?b)*ff(?c) = f(?c,?a,?b);

but the advantage of the shuffle statement is that is also does a certain amount of combinatorics
when there are identical arguments. Unfortunately the combinatorics doesn’t extend over groups
of arguments that are identical as in

CF f;

L F = f(0,1,0,1,0,1)*f(0,1,0,1,0,1);

Shuffle,f;

.end

Time = 0.00 sec Generated terms = 141

F Terms in output = 32

Bytes used = 892

It does get the combinatorics between two zeroes or two ones, but it cannot handle the groups.
The explicit method above however doesn’t do any combinatorics and generates 924 terms.

One of the applications of this statement is in the field of harmonic sums, harmonic polyloga-
rithms and multiple zeta values. Its twin brother is the stuffle statement (see 7.141).

When the option once is mentioned, only one pair will be contracted this way. Without this
option all occurrences of the function inside a term will be treated till there are only terms with a
single occurrence of the function.

7.135 skip

Type Specification statement
Syntax skip;

skip <list of expressions>;
See also nskip (7.103)

In the first variety this statement marks all active expressions that are in existence at the moment
this statement is compiled, to be skipped. In the second variety this is done only to the active
expressions that are specified. If an expression is skipped in a given module, the statements in the
module have no effect on it. Also it will not be sorted again at the end of the module. This means
that any bracket information (see 7.11) in the expression remains the way it was. Consult also the
nskip statement in 7.103.

Skipped expressions can be used in the expressions in the r.h.s. of id statements (see 7.70) or
multiply statements (see 7.94), etc.
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7.136 sort

Type Executable statement
Syntax sort;
See also term (7.149), endterm (7.51)

Statement to be used inside the term environment (see 7.149 and 7.51). It forces a sort in the same
way as a .sort instruction forces a sort for entire expressions.

7.137 splitarg

Type Executable statement
Syntax splitarg options {<name of function/set> [<argument specifications>]};
See also splitfirstarg (7.138), splitlastarg (7.139), factarg (7.56)

Takes the indicated argument of a function and if such an argument is a subexpression that consists
on more than one term, all terms become single arguments of the function as in

f(a+b-5*c*d) --> f(a,b,-5*c*d)

The way arguments are indicated is rather similar to the way this is done in the argument statement
(see 7.9). One can however indicate only a single group of functions in one statement. Additionally
there are other options. All options are in the order that they should be specified:
(term) Only terms that are a numerical multiple of the given term are

split off. The terms that are split off will trail the remainder.

((term)) Only terms that contain the given term will be split off. The terms
that are split off will trail the remainder.

The statement is terminated with a sequence of functions or sets of functions. The splitting action
will apply only to the specified functions or to members of the set(s). If no functions or sets of
functions are specified all functions will be treated, including the built in functions.
The argument specifications consist of a list of numbers, indicating the arguments that should be
treated. If no arguments are specified, all arguments will be treated.

7.138 splitfirstarg

Type Executable statement
Syntax splitfirstarg {<name of function/set> [<argument specifications>]};
See also splitarg (7.137), splitlastarg (7.139)

A little bit like the SplitArg statement (see 7.137). Splits the given argument(s) into its first term
and a remainder. Then replaces the argument by the remainder, followed by the first term.
The statement is terminated with a sequence of functions or sets of functions. The splitting action
will apply only to the specified functions or to members of the set(s). If no functions or sets of
functions are specified all functions will be treated, including the built in functions.
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The argument specifications consist of a list of numbers, indicating the arguments that should be
treated. If no arguments are specified all arguments will be treated.

7.139 splitlastarg

Type Executable statement
Syntax splitlastarg {<name of function/set> [<argument specifications>]};
See also splitarg (7.137), splitfirstarg (7.138)

A little bit like the SplitArg statement (see 7.137). Splits the given argument(s) into its last term
and a remainder. Then replaces the argument by the remainder, followed by the last term.
The statement is terminated with a sequence of functions or sets of functions. The splitting action
will apply only to the specified functions or to members of the set(s). If no functions or sets of
functions are specified all functions will be treated, including the built in functions.
The argument specifications consist of a list of numbers, indicating the arguments that should be
treated. If no arguments are specified all arguments will be treated.

7.140 strictrounding

Type Executable statement
Syntax strictrounding [<precision>];

See chapter 22 on the floating point capability.

7.141 stuffle

Type Executable statement
Syntax stuffle,functionname+;

stuffle,functionname-;
stuffle,once,functionname+;
stuffle,once,functionname-;

See also shuffle (7.134)

This statement takes two occurrences of the mentioned function and outputs terms, each with one
function in which the two argument lists have been merged according to the rules for nested sums.
The plus and minus signs refer to ones favorite definition for nested sums. In the case of the plus
sign, the definition is

N∑
i=1

N∑
i=1

=
N∑
i=1

i−1∑
j=1

+
N∑
j=1

j−1∑
i=1

+
N∑

i=j=1

(7.4)
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while in the case of the minus the definition is

N∑
i=1

N∑
i=1

=
N∑
i=1

i∑
j=1

+
N∑
j=1

j∑
i=1

−
N∑

i=j=1

(7.5)

It is assumed that we have harmonic sums (see the summer library in the FORM distribution).
For such sums we expect functions with lists of nonzero integer arguments. Example:

CF S,R;

Symbols N,n;

L F = S(R(1,-3),N)*S(R(-5,1),N);

id S(R(?a),n?)*S(R(?b),n?) = S(?a)*S(?b)*R(n);

Stuffle,S-;

id S(?a)*R(n?) = S(R(?a),n);

Print +s;

.end

Time = 0.00 sec Generated terms = 12

F Terms in output = 12

Bytes used = 462

F =

+ S(R(-6,-4),N)

- S(R(-6,-3,1),N)

- S(R(-6,1,-3),N)

- S(R(-5,1,-4),N)

+ S(R(-5,1,-3,1),N)

+ 2*S(R(-5,1,1,-3),N)

- S(R(-5,2,-3),N)

- S(R(1,-5,-4),N)

+ S(R(1,-5,-3,1),N)

+ S(R(1,-5,1,-3),N)

+ S(R(1,-3,-5,1),N)

- S(R(1,8,1),N)

;

The above program is equivalent to the basis procedure in the summer library. As with the shuffle
statement (see 7.134) a certain amount of combinatorics has been built in.

When the option once is mentioned, only one pair will be contracted this way. Without this
option all occurrences of the function inside a term will be treated till there are only terms with a
single occurrence of the function.

The stuffle command takes also the effect of roots of unity 7.144 into account in the same way
that the signs of alternating sums are taken into account. This means that the sum indices don’t
have to be integers, but could be multiples of a single symbol that has been declared to be a root
of unity 7.144.
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7.142 sum

Type Executable statement
Syntax sum <list of indices>;
See also renumber (7.127)

The given indices will be summed over. There are two varieties. In the first the index is followed
by a sequence of nonnegative short integers. In that case the summation means that for each of
the integers a new instance of the term is created in which the index is replaced by that integer. In
the second variety the index is either the last object in the statement or followed by another index.
In that case the index is replaced by an internal dummy index of the type N1_? (or with another
number instead of the 1). Such indices have the current default dimension and can be renamed at
will by FORM to bring terms into standard notation. For example:

f(N2_?,N1_?)*g(N2_?,N1_?)

will be changed into

f(N1_?,N2_?)*g(N1_?,N2_?).

The user can use these dummy indices in the left hand side of id statements.

7.143 switch

Type Executable statement
Syntax switch,$-variable;

See also case (7.13), break (7.12), default(7.31), endswitch (7.50).

The argument of the switch statement should be a dollar variable which evaluates into an integer
that first inside a FORM word. On a 64-bit processor this would be an integer in the range −231

to 231 − 1. The switch statement should be paired with an endswitch statement. Between the two
there will be a number of cases, each marked by an integer. If the value of the dollar variable
corresponds to the value of one of these cases, execution will continue with the first statement after
the corresponding case statement. Example:

id f(x?$x) = f(x);

switch $x;

case -1;

some statements

break;

case 3;

more statements

break;

case 4;

case 5;

and a few more

break;

default;
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and the default action

break;

endswitch;

In principle the action is the same as in any computer language that has a switch construction,
including the fall-through between case 4 and case 5. Whether the selection of the cases goes by
binary search in a sorted list or by jumptable is determined by the endswitch statement.

7.144 symbols

Type Declaration statement
Syntax s[ymbols] <list of symbols to be declared>;

Declares one or more symbols. Each symbol can be followed by a number of options. These are
(assuming that x is the symbol to be declared):
x#r The symbol is real. This is the default.

x#c The symbol is complex. This means that two spaces are reserved for this symbol,
one for x and one for x# (the complex conjugate).

x#i The symbol is imaginary.

x#=number The symbol is a number-th root of unity This means that the number-th power of
the symbol will be replaced by one and half this power (if even) by -1. Negative
powers will be replaced by corresponding positive powers.

x(:5) The symbol has the maximum power 5. This means that x6 and higher powers are
automatically eliminated during the normalization of a term. Of course any other
number, positive or negative, is allowed.

x(-3:) The symbol has the minimum power -3. This means that x−4 and lower powers
are automatically eliminated during the normalization of a term. Of course any
other number, positive or negative, is allowed. Note that when the minimum
power is positive, terms that have no power of x should technically be eliminated,
but FORM will not do so. Such an action can be achieved at any moment with
a combination of the count option of an if statement (see 7.73) and a discard
statement (see 7.35).

x(-3:5) The combination of a maximum and a minimum power restriction (see above).

Complexity properties and power restrictions can be combined. In that case the complexity prop-
erties come first and then the power restrictions.

7.145 symmetrize

Type Executable statement
Syntax symm[etrize] {<name of function/tensor> [<argument specifications>];}
See also antisymmetrize (7.4), cyclesymmetrize (7.29), rcyclesymmetrize (7.124)
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The arguments consist of the name of a function (or a tensor), possibly followed by some specifi-
cations. Hence we have the following varieties:

<name> The function is symmetrized in all its arguments.

<name><numbers> The function is symmetrized in the arguments that are mentioned.
If there are fewer arguments than the highest number mentioned
in the list or arguments, no symmetrization will take place.

<name>:<number> Only functions with the specified number of arguments will be
considered. Note: the number should follow the colon directly
without intermediate space or comma.

<name>:<number><numbers> If there is a number immediately following the colon, only func-
tions with exactly that number of arguments will be considered.
If the list of arguments contains numbers greater than this num-
ber, they will be ignored. If no number follows the colon directly,
this indicates that symmetrization will take place, no matter the
number of arguments of the function. If the list of arguments has
numbers greater than the number of arguments of the function,
these numbers will be ignored.

<name>
<(groups of numbers)>

The groups are specified as lists of numbers of arguments between
parenthesis. All groups must have the same number of arguments
or there will be a compile error. The groups are symmetrized as
groups. The arguments do not have to be adjacent. Neither do
they have to be ordered. The symmetrization takes place in a way
that the first elements of the groups are most significant, etc. If
any argument number is greater than the number of arguments of
the function, no symmetrization will take place.

<name>:<number>
<(groups of numbers)>

The groups are specified as lists of numbers of arguments between
parenthesis. All groups must have the same number of arguments
or there will be a compile error. The groups are symmetrized as
groups. The arguments do not have to be adjacent. Neither do
they have to be ordered. The symmetrization takes place in a way
that the first elements of the groups are most significant, etc. If
no number follows the colon directly symmetrization takes place
no matter the number of arguments of the function. Groups that
contain a number that is greater than the number of arguments
of the function will be ignored. If a number follows the colon
directly, only functions with that number of arguments will be
symmetrized. Again, groups that contain a number that is greater
than the number of arguments of the function will be ignored.

The action of this statement is to symmetrize the (specified) arguments of the functions that are
mentioned. This means that the arguments are brought to ‘natural order’ in the notation of FORM
by trying permutations of the arguments or groups of arguments. The ‘natural order’ may depend
on the order of declaration of the variables.

Examples:

Symmetrize Fun;
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Symmetrize Fun 1,2,4;

Symmetrize Fun:5;

Symmetrize Fun: 1,2,4;

Symmetrize Fun:5 1,2,4;

Symmetrize Fun (1,6),(7,3),(5,2);

Symmetrize Fun:8 (1,6),(7,3),(5,2);

Symmetrize Fun: (1,6),(7,3),(5,2);

7.146 table

Type Declaration statement
Syntax table <options> <table to be declared>;
See also functions (7.64), ctable (7.27), ntable (7.104), fill (7.59)

The statement declares a single table. A table is a very special instance of a function. Hence it can
be either commuting or noncommuting. The table statement declares its function to be commuting.
A noncommuting table is declared with the ntable statement (see 7.104). A table has a number
of table indices (in the case of zero indices the table has to be sparse) and after that it can have
a number of regular function arguments with or without wildcarding. The table indices can come
in two varieties: matrix like or sparse. In the case of a matrix like table, for each of the indices
a range has to be specified. FORM then reserves a location for each of the potential elements.
For a sparse table one only specifies the number of indices. Sparse tables take less space, but they
require more time searching whether an element has been defined. For a matrix like table FORM
can look directly whether an element has been defined. Hence one has a tradeoff between space
and speed. A zero-dimensional (sparse) table has of course only a single element.

Table elements are defined with the fill statement (see 7.59). Fill statements for table elements
cannot be used before the table has been declared with a table or ntable statement.

When FORM encounters an unsubstituted table it will look for its indices. Then it can check
whether the table element has been defined. If not, it can either complain (when the ‘strict’ option
is used) or continue without substitution. Note that an unsubstituted table element is a rather
expensive object as FORM will frequently check whether it can be substituted (new elements can
be defined in a variety of ways....). If the indices match a defined table element, FORM will check
whether the remaining arguments of the table will match the function-type arguments given in the
table declaration in the same way regular function arguments are matched. Hence these arguments
can contain wildcards and even argument field wildcards. If a match occurs, the table is replaced
immediately.
The options are
check A check is executed on table boundaries. An element that is outside the

table boundaries (regular matrix type tables only) will cause an error
message and execution will be halted.

relax Normally all elements of a table should be defined during execution
and an undefined element will give an error message. The relax option
switches this off and undefined elements will remain as if they are regular
functions.

144



sparse The table is considered to be sparse. In the case of a sparse table only
the number of indices should be specified. Ranges are not relevant. Each
table element is stored separately. Searching for table elements is done
via a balanced tree. This takes of course more time than the matrix
type search with is just by indexing. A matrix like table is the default.

strict If this option is specified all table elements that are encountered during
execution should be defined. An undefined table element will result in
an error and execution is halted. Additionally all table elements should
be properly defined at the end of the module in which the table has been
defined.

zerofill Any undefined table element is considered to be zero.

onefill Any undefined table element is considered to be one.

The defaults are that the table is matrix like and table elements that cannot be substituted will
result in an error.

Ranges for indices in matrix like tables are indicated with a colon as in

Symbol x;

Table t1(1:3,-2:4);

Table t2(0:3,0:3,x?);

Table sparse,t3(4);

The table t1 is two dimensional and has 21 elements. The table t2 is also two dimensional and
has 16 elements. In addition there is an extra argument which can be anything that a wildcard
symbol will match. The table t3 is a sparse table with 4 indices.

If the computer on which FORM runs is a 32 bit computer no table can have more than 215 = 32768
elements. On a 64 bit computer the limit is 231, but one should take into account that each element
declared causes some overhead.

If the wildcarding in the declaration of a table involves the definition of a dollar variable (this is
allowed! See 6) parallel execution of the entire remainder of the FORM program is switched off.
This is of course only relevant for parallel versions of FORM. But if at all possible one should try
to find better solutions than this use of dollar variables, allowing future parallel processing of the
program.
In some cases tables are built up slowly during the execution of a program and used incrementally.
This means that more and more CPU memory is needed. Eventually this can cause a crash by lack
of memory. In the case that the earlier elements of the table aren’t needed anymore, one could use
the ClearTable 7.19 statement.

7.147 tablebase

This statement is explained in the chapter on tablebases (12).
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7.148 tensors

Type Declaration statement
Syntax t[ensors] <list of tensors to be declared>;
See also functions (7.64), ctensors (7.28), ntensors (7.105)

A tensor is a special function that can have only indices for its arguments. If an index a contracted
with the index of a vector Schoonschip notation is used. This means that the vector is written as
a pseudo argument of the tensor. It should always be realized that in that case in principle the
actual argument is a dummy index. Tensors come in two varieties: commuting and noncommuting.
The tensor statement declares a tensor to be commuting. In order to declare a tensor to be
noncommuting one should use the ntensor statement (see 7.105).
The options that exist for properties of tensors are the same as those for functions (see 7.64).

7.149 term

Type Executable statement
Syntax term;
See also endterm (7.51), sort (7.136)

Begins the term environment. This environment is terminated with the endterm statement (see
7.51). The action is that temporarily the current term is seen as a little expression by itself. The
statements inside the environment are applied to it and one can even sort the results with the sort
statement (see 7.136) which should not be confused with the .sort instruction that terminates a
module. Inside the term environment one can have only executable statements and possibly term-
wise print statements (see 7.116). When the end of the term environment is reached, the results
are sorted (as would be done with an expression at the end of a module) and execution continues
with the resulting terms. This environment can be nested.

7.150 testuse

Type Executable statement
Syntax testuse [”<tablename(s)>”];
See also tablebases (12), testuse (12.10)

This statement is explained in the chapter on tablebases.

7.151 threadbucketsize

Type Declaration
Syntax ThreadBucketSize,number;
See also the section on TFORM (18.1)
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This statement is only active in TFORM. In all other versions of FORM it is ignored. It sets the
size of the buckets that the master thread prepares for treatment by the workers. Bigger buckets
means less overhead in signals, but when the buckets are too big the workers may have to wait
too long before getting tasks. The best bucket size is usually between 100 and 1000, although this
depends very much on the problem. The default value is currently 500. For more ways to set this
variable one should consult the section on TFORM (18.1). To find out what its value is, use the
‘ON,setup;’ statement (7.110 and 17).

7.152 tofloat

Type Executable statement
Syntax tofloat;

See chapter 22 on the floating point capability.

7.153 topolynomial

Type Executable statement
Syntax topolynomial[,OnlyFunctions[,<list of functions>]];
See also factarg (7.56), FromPolynomial (7.63), ArgToExtraSymbol (7.8)

and ExtraSymbols (7.55, 2.11).

Starting with version 4.0 of FORM some built in operations or statements can only deal with
symbols and numbers. Examples of this are factorization (7.56) and output simplification (still
to be implemented). The ToPolynomial statement takes each term, looks for objects that are not
symbols to positive powers and replaces them by symbols. If the object has been encountered before,
the same symbol will be used, otherwise a new symbol will be defined. The object represented by
the ‘extra symbol’ is stored internally and can be printed if needed with the %X option in the
#write instruction (3.68). Note that negative powers of symbols will also be replaced.

In some cases one would like to do this only for a subset of objects. It is possible to do this only
for functions, using the OnlyFunctions option. If no functions are specified, all functions will be
replaced by extra symbols. If a list of functions is specified, only those functions will be replaced.

7.154 torational

Type Executable statement
Syntax torational;

See chapter 22 on the floating point capability.

7.155 tospectator

Type Executable statement
Syntax tospectator <spectator>;
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See chapter 20 on spectators.

7.156 totensor

Type Executable statement
Syntax totensor [nosquare] [functions] [!<vector or set>] <vector> <tensor>;

totensor [nosquare] [functions] [!<vector or set>] <tensor> <vector>;
See also tovector (7.157)

Looks for multiple occurrences of the given vector, either inside dotproducts, contracted with a
tensor, as argument of a function or as a loose vector with an index. In all occurrences in which
the vector has been contracted a dummy index is introduced to make the contraction apparent.
Then all these vectors with their indices are replaced by the specified tensor with all the indices of
these vectors. To make this clearer:

pµ1pµ2pµ3 → tµ1µ2µ3

and hence

p.p1^2*f(p,p1)*p(mu)*tt(p1,p,p2,p)

gives after totensor p,t;

f(N1_?,p1)*tt(p1,N2_?,p2,N3_?)*t(p1,p1,mu,N1_?,N2_?,N3_?)

The options are
nosquare Dotproducts with twice the specified vector (square of the vector) are not

taken into account.

functions Vectors that are arguments of regular functions will also be considered. By
default this is not done.

!vector Dotproducts involving the specified vector are not treated.

!set The set should be a set of vectors. All dotproducts involving a vector of the
set are not treated.

7.157 tovector

Type Executable statement
Syntax tovector <tensor> <vector>;

tovector <vector> <tensor>;
See also totensor (7.156)

The opposite of the totensor statement. The tensor is replaced by a product of the given vectors,
each with one of the indices of the tensor as in:

tµ1µ2µ3 → pµ1pµ2pµ3
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7.158 trace4

Type Executable statement
Syntax trace4 [<options>] <index>;
See also tracen (7.159), chisholm (7.17), unittrace (7.164)

and the chapter on gamma algebra (14)

Takes the trace of the gamma matrices with the given trace line index. It assumes that the matrices
are defined in four dimensions, hence it uses some relations that are only valid in four dimensions.
For details about these relations and other methods used, consult chapter 14 on gamma matrices.
The options are:

contract Try to use the Chisholm identity to eliminate this trace and contract it
with other gamma matrices. See also 7.17. This is the default.

nocontract Do not use the Chisholm identity to eliminate this trace and contract it
with other gamma matrices. See also 7.17.

nosymmetrize When using the Chisholm identity to eliminate this trace and contract
it with other gamma matrices, do not do it in the symmetric fashion,
but use the first contraction encountered. See also 7.17.

notrick The final stage of trace taking, when all indices are different and there are
no contractions with identical vectors, as well as no γ5 matrices present,
is done with n-dimensional methods, rather than with 4-dimensional
tricks.

symmetrize When using the Chisholm identity to eliminate this trace and contract
it with other gamma matrices, try to do it in the symmetric fashion.
See also 7.17.

trick The final stage of trace taking, when all indices are different and there
are no contractions with identical vectors is done using the 4-dimensional
relation
γaγbγc = ϵabcdγ5γ

d + γaδbc − γbδac + γcδab

This gives a shorter result for long traces. It is the default.

7.159 tracen

Type Executable statement
Syntax tracen <index>;
See also trace4 (7.158), chisholm (7.17), unittrace (7.164)

and the chapter on gamma algebra (14)

Takes the trace of the gamma matrices with the spin line indicated by the index. It is assumed
that the trace is over a symbolic number of dimensions. Hence no special 4-dimensional tricks are
used. The presence of γ5, γ6 or γ7 is not tolerated. When indices are contracted FORM will try
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to use the special symbol for the dimension−4 if it has been defined in the declaration of the index
(see 7.76. This results in relatively compact expressions. For more details on the algorithm used,
see chapter 14 on gamma matrices.

7.160 transform

Type Executable statement
Syntax transform,function(s),<one or more transformations>;

Statement to manipulation function arguments and fields of arguments. Allows speedy transfor-
mations without the need of multiple statements or repeat loops.

The function(s) is/are indicated as individual, comma or blank space separated, functions or
sets of functions.

If there is more than one transformation, the transformations are separated by comma’s (or
blanks, unless the blank space would not induce a comma).

Each transformation consists of its keyword, indicating its type, followed by a range of arguments
that is enclosed by parentheses. After that specific information may follow. The range is as in

(1,4)

(3,last)

(last-6,last-2)

hence two indicators, separated by a comma. If the first number is bigger than the second the
arguments will be processed in reverse order whenever this is relevant. In the descriptions below
we will indicate the range by (r1,r2). The numbers in the above examples may be also dollar
variables, provided they evaluate into numbers at the time of execution. Hence

($x,$y)

($x,last)

(last-$x,last-2)

are potentially legal ranges. One may not use $x+2 or other expressions that still need evaluation.
The transformations that are allowed currently are:

replace replace(r1,r2)=(from1,to1,from2,to2,...,fromn,ton) in which the from-to pairs
are as in the replace function. Here however there are more options than in
the replace function as we can specify (small) numbers as well as in
replace(1,last)=(0,1,1,0) which would replace arguments that are zero by one
and arguments that are one by zero. Generic arguments are indicated by the
new variables xarg , iarg , parg and farg as in
replace(1,last)=(xarg ,2xarg +1,p) which would replace f(2,a) by f(5, 2a+1,p)
if a is a symbol and p a vector. To catch p one would need to use parg .

encode encode(r1,r2):base=number will interpret the arguments as the digits in a base
2 number system, compute the complete number and replace the arguments
by a single argument that is that number. The number must fit inside a
single FORM word and so must each of the original arguments. They should
actually be smaller than the number of the base.
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decode decode(r1,r2):base=number will do the opposite of encode. It will take a single
argument (the smallest of the two given) and expand it into digits in a number
system given by the base. It will create the specified number of digits and
replace the original number by the given number of arguments representing
these digits. If r2 is less than r1 the digits will be in reverse order.

tosumnotation tosumnotation(r1,r2) or implode(r1,r2) realizes an encoding in which zeroes
are absorbed as extra values in the first nonzero argument that is following.
This is used when dealing with harmonic sums and harmonic polylogarithms.
An example is that (0,0,1,0,a,0,0,0,-1) (which is in integral notation) goes
into (3,2*a,-4) (which is in sum notation). Currently only a single symbol
is allowed and the numbers should be (small) integers because otherwise the
reverse operation (explode) would generate too many arguments. Instead of
“tosumnotation” one may also use the word “implode” in accordance with the
argimplode statement.

tointegralnotation tointegralnotation(r1,r2) or explode(r1,r2) undoes what implode might have
done. Hence each integer with an absolute value n generates n− 1 zeroes and
leaves something with absolute value one. Instead of “tointegralnotation” one
may also use the word “explode” in accordance with the argexplode statement.

permute permute(1,3,5)(2,6) will permute the arguments according to the cycles in-
dicated. The cycles are executed in order and may overlap. Their num-
ber is not restricted. In the above example f(a1,a2,a3,a4,a5,a6,a7) →
f(a3,a6,a5,a4,a1,a2,a7). It is allowed to use $-variables in the cycles, including
$-variables that are obtained by matching argument field wildcards.

reverse reverse(r1,r2) reverses the order of the arguments in specified range.

dedup dedup(r1,r2) removes duplicates from the arguments in the range, keeping the
first.

cycle cycle(r1,r2)=+/-number will perform a cyclic permutation of the indicated
range of arguments. If the number is preceded by a - the cycling is to the left.
If there is a plus sign the cycling is to the right. Note that either the plus
or the minus sign is mandatory. The number following the +/- sign is also
allowed to be a dollar variable provided it evaluates to a legal number during
execution.

islyndon islyndon(r1,r2)=(yes,no) will test whether the indicated range of arguments
forms a Lyndon word according to the ordering of arguments in FORM.
The yes and no arguments are what the main term will be multiplied by
when the range forms a Lyndon word or does not respectively. Because
the definition of a Lyndon word is the unique minimal cyclic permutation
of the arguments, and because often we may need the unique maximal
cyclic permutation there are varieties: for the minimum one may also use
islyndon<(r1,r2)=(yes,no) or islyndon-(r1,r2)=(yes,no), while for the maxi-
mum one may use islyndon>(r1,r2)=(yes,no) or islyndon+(r1,r2)=(yes,no).
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tolyndon tolyndon(r1,r2)=(yes,no) will permute the given range in a cyclic manner till
it is (if possible) a Lyndon word according to the ordering of arguments in
FORM. The yes and no arguments are what the main term will be multiplied
by when afterwards the range forms a Lyndon word or does not respectively.
Because the definition of a Lyndon word is the unique minimal cyclic permu-
tation of the arguments, and because often we may need the unique maximal
cyclic permutation there are varieties: for the minimum one may also use
tolyndon<(r1,r2)=(yes,no) or tolyndon-(r1,r2)=(yes,no), while for the maxi-
mum one may use tolyndon>(r1,r2)=(yes,no) or tolyndon+(r1,r2)=(yes,no).
If the output is not a Lyndon word, this will be due to that it is a minimum
or maximum that is not unique.

addargs addargs(r1,r2) replaces the indicated range of arguments by their sum. This
is effectively the inverse of the SplitArg statement.

mulargs mulargs(r1,r2) replaces the indicated range of arguments by their product.
This is effectively the inverse of the FactArg statement.

dropargs dropargs(r1,r2) removes the indicated range of arguments.

selectargs selectargs(r1,r2) removes all arguments with the exception of the indicated
range of arguments.

Some Examples. Assume that we have some Multiple Zeta Values (see the papers on harmonic
sums, harmonic polylogarithms and the MZV data mine) in the sum notation, but for calculational
reason we want to use a binary encoding (as used in the MZV programs). We could have

Symbol x,x1,x2;

CF H,H1;

Off Statistics;

L F = H(3,4,2,6,1,1,1,2);

repeat id H(?a,x?!{0,1},?b) = H(?a,0,x-1,?b);

Print;

.sort

F =

H(0,0,1,0,0,0,1,0,1,0,0,0,0,0,1,1,1,1,0,1);

Multiply H1;

repeat id H(x?,?a)*H1(?b) = H(?a)*H1(?b,1-x);

id H1(?a)*H = H(?a);

Print;

.sort

F =

H(1,1,0,1,1,1,0,1,0,1,1,1,1,1,0,0,0,0,1,0);

repeat id H(x1?,x2?,?a) = H(2*x1+x2,?a);

Print;

.end

F =

152



H(907202);

The new version of the same program would be

Symbol x,x1,x2;

CF H,H1;

Off Statistics;

L F = H(3,4,2,6,1,1,1,2);

Transform,H,explode(1,last),

replace(1,last)=(0,1,1,0),

encode(1,last):base=2;

Print;

.end

F =

H(907202);

It should be clear that this is simpler and faster. On a 64-bits computer it is faster by more than
a factor 100.

7.161 tryreplace

Type Executable statement
Syntax tryreplace {<name> <replacement>};
See also the replace function (8.60)

The list of potential replacements should be similar to the arguments of the replace function (see
8.60). FORM will make a copy of the current term, try the replacement and if the replacement
results in a term which, by the internal ordering of FORM, comes before the current term, the
current term is replaced by the new variety.

7.162 unfactorize

Type Output control statement
Syntax unfactorize {<name of expression(s)>};
See also the chapter on polynomials 11 and the factorize statement 7.58.

Without arguments the statement causes all expressions that were factorized to be ’unfactorized’.
This means that all factors are multiplied and the expression is replaced by this new version. Like
the factorize statement this statement is an output control statement, which means that it takes
effect after an expression has been processed in the current module (see also the factorize 7.58
statement).
Because an immediate multiplication of all factors is sometimes far from optimal, FORM uses a
binary scheme to combine factors. After each step there will be a sort operation. This means that
when statistics are printed, there may be several statistics for this step.
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When the statement has arguments, these arguments should be names of expressions. In that case
the unfactorization is applied only to the expressions that are specified.
If one likes to unfactorized all expressions except for a few ones, one can use the unfactorize
statement without arguments and then exclude the few expressions that should not be treated with
the nunfactorize statement (see 7.106).

7.163 unhide

Type Specification statement
Syntax unhide;

unhide <list of expressions>;
See also hide (7.69), nhide (7.98), nunhide (7.107), pushhide (7.121), pophide (7.115)

In its first variety this statement causes all statements in the hide file to become active expressions
again. In its second variety only the specified expressions are taken from the hide system and
become active again. An expression that is made active again can be manipulated again in the
module in which the unhide statement occurs. For more information one should look at the hide
statement in 7.69.

Note that if only a number of expressions is taken from the hide system, the hide file may be left
with ‘holes’, i.e. space between the remaining expressions that contain no relevant information any
longer. FORM contains no mechanism to use the space in these holes. Hence if space is at a
premium and many holes develop one should unhide all expressions (this causes the hide system to
be started from zero size again) and then send the relevant expressions back to the hide system.

7.164 unittrace

Type Declaration statement
Syntax u[nittrace] <value>;
See also trace4 (7.158), tracen (7.159), chisholm (7.17)

and the chapter on gamma algebra (14).

Sets the value of the trace of the unit matrix in the Dirac algebra (i.e. the object g1_(n) for trace
line n)). The parameter value can be either a short positive number or any symbol with the
exception of i_. See also chapter 14.

7.165 vectors

Type Declaration statement
Syntax v[ectors] <list of vectors to be declared>;

Used for the declaration of vectors. Example:
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Vectors p,q,q1,q2,q3;

7.166 while

Type Executable statement
Syntax while ( condition );
See also endwhile (7.52), repeat (7.128), if (7.73)

This statement starts the while environment. It should be paired with an endwhile statement (see
7.52) which terminates the while environment. The statements between the while and the endwhile
statements will be executed as long as the condition is met. For the description of the condition
one should consult the if statement (see 7.73). The while/endwhile combination is equivalent to
the construction

repeat;

if ( condition );

endif;

endrepeat;

If only a single statement is inside the environment one can also use

while ( condition ) statement;

Of course one should try to avoid infinite loops. In order to maximize the speed of FORM not
all internal stacks are protected and hence the result may be that FORM may crash. It is also
possible that FORM may detect a shortage of buffer space and quit with an error message.

For each term for which execution reaches the endwhile statement, control is brought back to the
while statement. For each term that reaches the while statement the condition is checked and if it
is met, the statements inside the environment are executed again on this term. If the condition is
not met, execution continues after the endwhile statement.

7.167 write

Type Declaration statement
Syntax w[rite] <keyword>;
See also on (7.110), off (7.109)

This statement is considered obsolete. All its varieties have been taken over by the on statement
(see 7.110) and the off statement (see 7.109). The current version of FORM will still recognize it,
but the user is advised to avoid its usage. In future versions of FORM it is scheduled to be used for
a different kind of writing and hence its syntax may change considerably. The conversion program
conv2to3 should help in the conversion of programs written for version 2. For completeness we still
give the syntax and how it should be converted. The keywords are:
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allnames Same as: On allnames;

allwarnings Same as: On allwarnings;

highfirst Same as: On highfirst;

lowfirst Same as: On lowfirst;

names Same as: On names;

powerfirst Same as: On powerfirst;

setup Same as: On setup;

shortstatistics Same as: On shortstatistics;

shortstats Same as: On shortstats;

statistics Same as: On statistics;

stats Same as: On stats;

warnings Same as: On warnings;
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Chapter 8

Functions

Functions are objects that can have arguments. There exist several types of functions in FORM.
First there is the distinction between commuting and noncommuting functions. Commuting func-
tions commute with all other objects. This property is used by the normalization routines that bring
terms into standard form. Noncommuting functions do not commute necessarily with other non-
commuting functions. They do however commute with objects that are considered to be commut-
ing, like symbols, vectors and commuting functions. Various instances of the same noncommuting
function but with different arguments do not commute either.
The next subdivision of the category of functions is in regular functions, tensors and tables. Tensors
are special functions that can have only indices or vectors for their arguments. If an argument is
a vector, it is assumed that this vector is there as the result of an index contraction. Tables are
functions with automatic substitution rules. A table must have at least one table index. Each time
during normalization FORM will check whether an instance of a table can be substituted. This
means that undefined table elements will slow the program down somewhat.
All the various types of functions are declared with their own declaration statements. These are
described in the chapter for the statements (see chapter 7).

One of the useful properties of functions is the wildcarding of their arguments during pattern
matching. The following argument wildcards are possible:
x? Here x is a symbol. This symbol can match either a symbol, any numerical argument,

or a complete subexpression argument that is not vectorlike or indexlike.

i? Here i is an index. This index can match either an index, a vector (actually the
dummy index of the vector that was contracted), or a complete subexpression that
is vector like (again actually the contracted dummy index).

v? Here v is a vector. This vector can match either a vector or a complete subexpression
that is vector like.

f? Here f is any functiontype. This function can match any function. It is the respon-
sibility of the user to avoid problems in the right-hand side if f happens to match a
tensor.

?a This is an argument field wildcard. This can match a complete set of arguments.
The set can be empty. Argument field wildcards have a name that starts with a
question mark followed by a name. They do not have to be declared as there cannot
be confusion.

In addition to the above syntax FORM knows a number of special functions with well defined
properties. All these functions have a name that ends in an underscore. In addition the names of
these built in objects are case insensitive. This means for instance that the factorial function can
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be referred to as fac_, Fac_ or FAC_ or whatever the user considers more readable. The built in
functions are:

8.1 abs

With one argument that is numerical it evaluates into the absolute value of the argument.

8.2 bernoulli

If it has one nonzero integer argument n, it evaluates into the n-th coefficient in the power series
expansion of x/(1− e−x).

8.3 binom

binom (n,i) = n!/(i!(n− i)!). If the arguments are non integer or negative, no substitution is made.

8.4 conjg

Currently not doing anything.

8.5 content

This function expects the name of a single expression or a dollar variable for its argument. If it
finds this the content of this expression or dollar variable is returned. The content is defined as a
term that has

� for its numerator the GCD of the numerators of all terms in the expression.

� for its denominator the LCM of the denominators of all terms in the expression.

� all the common subexpressions in all terms of the expression.

� the most negative powers of all symbols and dotproducts with negative powers in the terms
of the expression.

When there are no negative powers and no denominators in the coefficients, this definition of the
content cöıncides with the classical definition of the content of a polynomial over the integers. Our
content has the property that if we divide the expression by it, we are left with an expression
of which the coefficients are all integer, there are no negative powers and the GCD of all terms
combined is one.
This function has one limitation. It will not consider noncommuting objects. Neither will it consider
denominator functions.
Caveat: this function is evaluated each time it is encountered. Therefore the best thing is to
evaluate it once in the definition of a dollar variable or an expression as in

#$x = content_(F);

Local G = (a+b)^10*$x;

Here the content is computed only once. In
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Local G = (a+b)^10*content_(F);

11 terms are generated and the content is only worked out when the terms are normalized. This
means that it will be evaluated 11 times. If one does not like dollar variables and still wants to
evaluate the content only once the code would be

Local G = ab^10*content_(F);

id ab = a+b;

because now the term will be normalized before the substitution makes it into eleven terms. This
assumes of course that the content does not contain the variable ab.

8.6 count

Similar to the count object in the if statement (see 7.73). This function expects the same arguments
as the count object and returns the corresponding count value for the current term.

8.7 d

The kronecker delta. Should have two indices for arguments. Often indicated as δµν . In automatic
summation over the indices the d often vanishes again as in d_(mu,nu)*p(mu)*q(nu) → p.q and
similar replacements. Internally this object is treated in a rather special way. Hence it will not
match a function wildcard.

8.8 dd

This is a combinatorics function. The tensor dd with an even number of indices is equal to the
totally symmetric tensor built up from products of kronecker delta’s. Each term in this symmetric
combination is normalized to one. In principle there are n!/(2n/2(n/2)! terms in this combination.
The profit comes when some or all the indices are contracted with vectors and some of these vectors
are identical. In that case FORM will use combinatorics to generate only different terms, each
with the proper prefactor. This can result in great time and space savings.

8.9 delta

With one numerical argument the result is one if the argument is zero and zero otherwise. With
two arguments the result is one if the arguments are numerical and identical. If they are numerical
and they differ the result is zero. In all other cases nothing is done.

8.10 deltap

If one argument and it is numerical the result is zero if the argument is zero and one otherwise. If
two arguments, the result is zero if the arguments are numerical and identical. If they are numerical
and they differ the result is one. In all other cases nothing is done.

8.11 denom

Internal function to describe denominators. Has a single argument. den(a+b) is printed as 1/(a+b).
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8.12 distrib

This is a combinatorics function. It should have at least five arguments. If we have

distrib_(type,n,f1,f2,x1,...,xm)

with type and n integers, f1 and f2 functions and then a number of arguments there can be action
if −2 ≤ type ≤ 2. The typical action is that the arguments x1,...,xm will be divided over the
two functions in all possible ways. For each possibility a new term is generated. The relative
order of the arguments is kept. If type is negative it is assumed that the collection of x-arguments
is antisymmetric and hence the number of permutations needed to make the split will determine
whether there will be a minus sign on the resulting term. When type is zero all possible divisions
are generated. Hence there will be 2m divisions. The second argument is then not relevant. If
type is 1 or -1 the second parameter says that the first function should obtain n arguments. The
remaining arguments go to the second function. If type is 2 or -2 the second function should obtain
n arguments. Example:

Symbols x1,...,x4;

CFunctions f,f1,f2;

Local F = f(x1,...,x4);

id f(?a) = distrib_(-1,2,f1,f2,?a);

Print +s;

.end

F =

+ f1(x1,x2)*f2(x3,x4)

- f1(x1,x3)*f2(x2,x4)

+ f1(x1,x4)*f2(x2,x3)

+ f1(x2,x3)*f2(x1,x4)

- f1(x2,x4)*f2(x1,x3)

+ f1(x3,x4)*f2(x1,x2)

;

When adjacent x-arguments are identical FORM uses combinatorics to avoid generating more
terms than necessary.

8.13 div

div_(x1,x2) is replaced by the quotient of the arguments. The arguments can be any valid
subexpressions, provided the whole function fits inside a term. When an argument is only an active
expression or a $-expression it is only expanded during the division. This way the contents of
such expressions can exceed the maximum term size. One should however realize that in that case
the operation takes place in allocated memory. This function replaces the experimental function
polydiv that existed in version 3.

8.14 dum

Special function for printing virtual brackets. dum_(a+b) is printed as (a+b): the name of this
function is not printed!
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8.15 dummy

For internal use only.

8.16 dummyten

For internal use only.

8.17 e

The Levi-Civita tensor. It is a totally antisymmetric tensor with well defined contraction rules (see
7.24).

8.18 exp

Internal function with two arguments. Represents argument1 to the power argument2. Of course
it is printed in the standard power notation.

8.19 exteuclidean

This is a number function. It expects two positive integer arguments. It then computes the Greatest
Common Divider of these arguments with the use of the extended Euclidean algorithm. The answer
will be in the same function but now there will be four arguments as in:

Symbols x1,x2,x3,x4;

Local F = exteuclidean_(54,84);

Print;

.sort

F =

exteuclidean_(54,84,-3,2);

id exteuclidean_(x1?,x2?,x3?,x4?) = x1*x3+x2*x4;

Print;

.end

F =

6;

We can see that we obtain the GCD with the relation that is characteristic for the extended
Euclidean algorithm. When the two arguments are relative prime, one obtains the so-called mod-
inverses of these numbers:

Symbols x1,x2,x3,x4,a,b;

Local F = exteuclidean_(97,101);

Print;

.sort
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F =

exteuclidean_(97,101,25,-24);

id exteuclidean_(x1?,x2?,x3?,x4?) = x1*x3+x2*x4

+a*mod2_(1/97,101)+b*mod2_(1/101,97);

Print;

.end

F =

1 - 24*b + 25*a;

Here 25 is the inverse of 97 when we calculate modulus 101 and -24 is the inverse of 101 when we
calculate modulus 97.
This function can be very handy when a calculation has been done modulus various prime numbers
and one would like to know the result modulus the product of these numbers. This combination is
done with the aid of the Chinese remainder theorem:

#procedure ChineseRemainder(NAME,NAME1,NAME2,M1,M2,PAR)

*

* Assumes that NAME1 is an expression mod $M1

* Assumes that NAME2 is an expression mod $M2

* Creates $ch1r and $ch2r with the property that

* the expression NAME = NAME1*$ch1r+NAME2*$ch2rn

* is the corresponding equation mod $M1*$M2

*

Modulus 0; * we need to switch off previous settings.

#$ch1r = exteuclidean_($‘M1’,$‘M2’);

#inside $ch1r;

id exteuclidean_(xxx1?,xxx2?,xxx3?,xxx4?) = xxx2*xxx4;

#endinside;

#$ch2r = exteuclidean_($‘M1’,$‘M2’);

#inside $ch2r;

id exteuclidean_(xxx1?,xxx2?,xxx3?,xxx4?) = xxx1*xxx3;

#endinside;

#$MM12 = $‘M1’*$‘M2’;

Modulus,plusmin,‘$MM12’;

Local ‘NAME’ = ‘NAME1i’*$ch1r+‘NAME2i’*$ch2r;

.sort

*

#endprocedure

8.20 extrasymbol

This function expects a single argument. This argument can be a number or an extra symbol(see
2.11). In either case the function is replaced by the expression that the corresponding extra symbol
stands for.
If there are more arguments or the argument does not represent a legal extra symbol, no substitution
is made.
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8.21 fac

The factorial function. If it has a single nonzero integer argument n it is replaced by n! but if the
result is bigger than the maximum allowable number an error will result.

8.22 factorin

When the argument is a single $-variable or an expression the function is replaced by the common
factor in the terms of that $-variable or expression. This common factor consists in the first place
of all symbolic objects that occur in all terms. In addition the numerical factor consists of the
GCD of all numerators and the LCM of all denominators. Hence if the $-variable or expression is
divided by the result of factorin all coefficients become integer.

8.23 farg

For internal use only.

8.24 firstbracket

In the case that there is a single argument and this single argument is the name of an expression,
this function is replaced by the part that is outside brackets in the first term of the expression. If
there are no brackets the function is replaced by one.

8.25 firstterm

This function expects the name of an expression or a dollar variable for its (single) argument. It
will return the first term in this expression or dollar variable. When it has to obtain the first term
of an expression, FORM uses the expression in the representation in which it was stored at the
end of the previous module. If the expression did not exist in the previous module, it will attempt
to use the expression as defined and processed in the current expression. If the expression has only
been defined in the current module and has not yet been processed (as is the case when referring
to the first term in the current expression) the answer will be unspecified. This use is considered
illegal, even though it does not generate an error message.

8.26 float

Internal function to describe floating point numbers. For a description, of this function, see chap-
ter 22 on the floating point system.

8.27 g5

The γ5 Dirac gamma matrix. We assume here that it anticommutes with the other Dirac gamma
matrices. Anybody who does not like that should program private libraries (this should not be too
difficult with the cycle symmetric functions (see 7.64). There should be a single index to indicate
the spinline.
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8.28 g6

There should be a single index to indicate the spinline. As in Schoonschip we use γ6 = 1 + γ5.

8.29 g7

There should be a single index to indicate the spinline. As in Schoonschip we use γ7 = 1− γ5.

8.30 g

The Dirac gamma matrix. Its first argument should be an index (either symbolic or numeric).
Then follow zero, one or more indices to indicate a string of gamma matrices that belong together.
Gamma matrices with the same first index are considered to belong together, but as long as the
indices are symbolic no assumptions are made about whether they go together or not. Hence no
commutation or anticommutation properties are applied for different spin lines unless the spinline
indices are both numeric.

8.31 gcd

gcd_(x1,...,xn) is replaced by the greatest common divisor of the arguments. The arguments
can be any valid subexpressions, provided the whole function fits inside a term. When an argument
is only an active expression or a $-expression it is only expanded during evaluation of the GCD.
This way the contents of such expressions can exceed the maximum term size. One should however
realize that in that case the operation takes place in allocated memory. This function replaces the
experimental function polygcd that existed in version 3.

8.32 gi

The unit Dirac gamma matrix. Should have a single index to indicate its spin line. Its is identical
to a regular gamma matrix with no Lorenz indices: gi_(n) = g_(n)

8.33 id

This function is a crossbreed between the replace 8.60 function and the id statement 7.70. To
become active it needs an even number of arguments. The odd numbered arguments can be
anything of the types:

a single symbol, possibly to an integer power.

a single dotproducts, possibly to an integer power.

a single function, possibly with any number and type of arguments.

When FORM encounters an id function the last step of normalizing a term is to replace the id
function by a number substitutions in which the odd arguments are replaced by the following even
arguments. These are not wildcard substitutions as in the replace function, but substitutions as
in regular id statements. The matching of the odd arguments is done in a single step as in an id-al
construction 7.2. Hence
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id_(x^2,y+z,y,u+v,x,z+u)

effectively becomes

id x^2 = y+z;

al y = u+v;

al x = z+u;

FORM treats multiple occurrences of the id function one at a time. It takes the leftmost occurrence
first, takes the patterns from the term, expands the right hand sides, tries to normalize the resulting
terms and only then continues with the next id function. For this reason the id function is
noncommuting.

8.34 integer

This is a rounding function. It should have either one or two arguments. If there is a single argument
and it is numeric, it will be rounded down to become an integer. If there are two arguments of
which the first is numeric and the second is either 1, 0 or -1, the result will be the rounded value
of the first argument. If the second argument is 1, the rounding will be down, when it is -1, the
rounding will be up and when it is zero the rounding will be towards zero. In all other cases nothing
is done.

8.35 inverse

inverse_(x1,x2) expects two arguments which are polynomials in the same single variable. The
return expression x3 has the property that x1x3 divided by x2 has remainder 1. Or in other words:
x3 is the inverse of x1 modulus x2. The arguments can be any valid subexpressions, provided the
whole function fits inside a term. When an argument is an active expression or a $-expression it
is only expanded during the division. This way the contents of such expressions can exceed the
maximum term size. One should however realize that in that case the operation takes place in
allocated memory.

8.36 invfac

One divided by the factorial function. If it has a single nonzero integer argument n, it is replaced
by 1/n!, but if this results in a number bigger than the maximum allowable number an error will
result.

8.37 makerational

This function takes two arguments. Both are integers. We assume calculus modulus the second
argument. The function is then replaced by a fraction of which both elements are less than the
square root of the second argument and that, in calculus modulus this second number would give
the same result as the first number modulus the second number. Example:

#$m = prime_(1);

#write <> "The prime number is %$",$m

The prime number is 2147483587
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L F = MakeRational_(12345678,$m);

Print;

.sort

F =

9719/38790;

Modulus ‘$m’;

Print;

.end

F =

12345678;

This function can be used to reconstruct fractions when calculus has been done modulus one or
more prime numbers.

8.38 match

Currently not active. Replaced automatically by 1.

8.39 max

If all its arguments are numeric, this function returns the maximum value of these arguments.

8.40 maxpowerof

If this function has a single argument that is a symbol, it returns the maximum power restriction
of this symbol. If none was given it will be the installation dependent value MAXPOWER which
is 10000 on 32 bit machines and 500000000 on 64 bit machines.

8.41 min

If all its arguments are numeric, this function returns the minimum value of these arguments.

8.42 minpowerof

If this function has a single argument that is a symbol, it returns the minimum power restriction
of this symbol. If none was given it will be the installation dependent value -MAXPOWER which
is -10000 on 32 bit machines.

8.43 mod

If there are two integer arguments and the second argument is a positive short integer (less than 215

on 32 bit computers and less than 231 on 64 bit computers) the return value is the first argument
modulus the second. Note that if the second argument is not a prime number and the first argument
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contains a denominator, division by zero could occur. It is up to the user to avoid such cases. See
also the mod2 function 8.44 and the rem function 8.59.

The function has one peculiarity: when the second argument is one, the function is left un-
touched.

8.44 mod2

This gives basically the same action as the mod function (see 8.43), but the answer will be in the
range −[(p− 1)/2] to +[(p+ 1)/2].

8.45 moebius

The Moebius function. It has the property:

� moebius (1) = 1

� moebius (n) = 0 if n can be divided by the square of a prime number

� moebius (n) = 1 if n contains an even number of different prime factors

� moebius (n) = -1 if n contains an odd number of different prime factors

The number n must be a positive integer for the evaluation to take place. The argument should be
no bigger than can be allowed by the biggest primes in Form. This means for a 64-bit computer
arguments above 231 may not give a correct result with the current algorithms that try for prime
factors. There is a second algorithm that does not suffer from this problem:

id moebius_(n) = 1-sum_(j,1,n-1,integer_(n/j)*moebius_(j));

but this algorithm needs all lower values and hence is inherently quadratic. Therefore we did not
use it.

8.46 mul

mul_(x,y) is replaced by x*y, but internally the multiplication is performed via polynomial routines
introduced in FORM version 4. This can be faster than the normal way of multiplications for big
polynomials: e.g., mul_($x,$y) where the $-variables $x and $y store big polynomials.

A drawback is, because the polynomial routines accept only symbols, all non-symbolic objects
in the operands are temporarily translated to (commuting) extra symbols. This process breaks the
ordering of non-commutative objects in the result.

8.47 nargs

Is replaced by an integer indicating the number of arguments that the function has.

8.48 node

For a description of this function, please see the section on diagrams 21.
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8.49 nterms

If this function has only one argument it is replaced by the number of terms inside this argument.

8.50 numfactors

This function returns the number of factors in a factorized expression (see the chapter on poly-
nomials 11) or dollar variable 6. It expects a single argument which should be the name of an
expression or a dollar variable. If the expression or dollar variable has not been factorized, the
function returns zero.

8.51 partitions

This function generates all partitions of a list of arguments into n parts. Each part consists of a
function name and a size. This function exploits symmetries of the arguments to make sure that
no argument is generated twice. Instead, a combinatorial prefactor is computed.

The syntax distinguishes three cases:

1] partitions_(n,[function,n1,]_1,...,[function,nn,]_n,arguments)

2] partitions_(n,[function,n1,]_1,...,[function,0],arguments)

3] partitions_(0,function,n1,arguments)

In the first case, the first entry specifies the number of partitions n. It should be followed by n
parts, defined by a function name and the number of arguments for that function. The final entries
are the arguments that will be distributed over the functions. The number of arguments should be
the same as the sum of all the function argument sizes. There are no restrictions on the type of
arguments.

The second case is the same as the first, except that the last partition has a 0 for the size. This
means that any leftover arguments are collected in this term. Thus partitions_(2,f1,3,f2,0,
arguments) yields the same as distrib (1,3,f1,f2,arguments).

The third case, determined by a 0 for the number of partitions followed by one part, spreads
the arguments over a repeated instance of that part. Thus partitions_(0,f1,2,arguments) is
similar to dd (arguments).

In case of a deviation from the above rules, no action will be taken. Some examples are given
below:

partitions_(2,f1,2,f2,1,x1,x1,x3) =

+ f1(x1,x1)*f2(x3) + 2*f1(x1,x3)*f2(x1)

;

partitions_(3,f1,2,f2,1,f3,0,x1,x1,x1,x2,x2,x2) =

+ 3*f1(x1,x1)*f2(x1)*f3(x2,x2,x2)

+ 9*f1(x1,x1)*f2(x2)*f3(x1,x2,x2)

+ 18*f1(x1,x2)*f2(x1)*f3(x1,x2,x2)

+ 18*f1(x1,x2)*f2(x2)*f3(x1,x1,x2)

+ 9*f1(x2,x2)*f2(x1)*f3(x1,x1,x2)

+ 3*f1(x2,x2)*f2(x2)*f3(x1,x1,x1)

;

partitions_(0,f1,3,x1,x1,x1,x4,x5,x6) =

+ f1(x1,x1,x1)*f1(x4,x5,x6)
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+ 3*f1(x1,x1,x4)*f1(x1,x5,x6)

+ 3*f1(x1,x1,x5)*f1(x1,x4,x6)

+ 3*f1(x1,x1,x6)*f1(x1,x4,x5)

;

8.52 pattern

Currently not active. Replaced automatically by 1.

8.53 perm

Generates all permutations of the arguments, with exception of the first argument which should be
the name of a function. This function will then have the permuted arguments as in:

CFunction f;

Symbols x1,...,x3;

Local F = perm_(f,x1,x2,x3);

Print +s;

.end

F =

+ f(x1,x2,x3)

+ f(x1,x3,x2)

+ f(x2,x1,x3)

+ f(x2,x3,x1)

+ f(x3,x1,x2)

+ f(x3,x2,x1)

;

The permutations are generated with an algorithm that takes subsequent cyclic permutations. If
one puts a nonzero integer before the function argument the output terms will be multiplied by -1
when the permutation is odd.

When the function name is the only argument the answer will be just this function without
arguments. One could argue that technically the answer should be zero, but this way the attention
of the user may be attracted to the occurrence which might not be the case when the term ’just
vanishes’. It is however rather simple to add a statement that makes such a function zero.

8.54 poly

This was an experimental function in version 3. It was for internal use with a whole category
of other experimental functions of which the functionality has been replaced by better working
functions that are more general. This category included the functions polyadd , polydiv , polygcd ,
polyintfac , polymul , polynorm , polyrem and polysub . See also the chapter on polynomials 11
and the functions gcd 8.31, div 8.13 and rem 8.59.
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8.55 prime

For a number of internal operations FORM needs prime numbers that are neither very large nor
very small. Hence it generates, when needed prime numbers that still fit inside a single FORM
word, but are maximal within that limitation. Hence for a 64-bits computer in which the largest
positive ‘small’ integer in FORM is 231 − 1, it works its way down from there. Once it has
determined that a number is prime it stores it in a list. The function prime gives access to this
list. The single argument n (n a positive integer) makes that prime_(n) will be replaced by the n-th
member of the list. There is a limitation to the size of the list which is implementation dependent.
The number will anyway never be smaller than the maximum power that is allowed for symbols.
Example:

Symbols x1,x2,x3,x4;

ON highfirst;

Local F = x1*prime_(1)+x2*prime_(2)

+x3*prime_(3)+x4*prime_(4);

Print;

.end

F =

2147483587*x1 + 2147483579*x2 + 2147483563*x3 + 2147483549*x4;

This function is useful when calculations generate very large intermediate coefficients, but in the
end the answer is relatively simple again. In that case one can do the calculation modulus one or
more prime numbers. If more prime numbers are used the Chinese remainder theorem can be used
(see the exteuclidean function 8.19 to combine the results and the makerational function 8.37 can
be used if fractions have to be reconstructed). An example of this kind of use is given in the simple
Groebner basis procedure that is in the packages library in the FORM site.

8.56 putfirst

This function allows one to select a given argument by its number. The syntax is:

putfirst_(name,argument_number,arguments...);

It will select the argument indicated by “argument number” in the argument field “arguments”
and output this as the first argument in the function or tensor specified by “name”. This argument
will then be followed by the remaining arguments. Example:

S a,a1,...,a10;

CF f,g;

L F = g(a,a1,...,a10);

id g(?a) = putfirst_(f,4,?a);

Print;

.end

F =

f(a3,a,a1,a2,a4,a5,a6,a7,a8,a9,a10);

170



8.57 random

A random number generator. When the function has a single positive integer argument, the func-
tion will return a pseudo random number in the range of one to that number inclusive. Hence one
can imitate a die roll with the call random (6). The program uses a random number generator as
described in vol 2 of the ”Art of computer programming, vol2” by D. Knuth with the parameters
set at 89,38 to give as long a cycle as possible. For very large numbers the program pastes several
random numbers together. The generator can be initialized with the preprocessor #setrandom 3.56
instruction. When running with TFORM or ParFORM each worker runs an independent gener-
ator with its own seed. The seeds of the workers are derived from the seed of the master and the
number of the worker in a non-trivial way. It should be noted however that with workers it may
be impossible to reproduce previous runs as it is non-deterministic which term ends up in which
worker.

8.58 ranperm

Generates a random permutation of the arguments, with exception of the first argument which
should be the name of a function. This function will then have the permuted arguments as in:

CFunction f;

Symbols x1,...,x5;

Local F = ranperm_(f,1,2,3,4,5,6)

+ranperm_(f,x1,x2,x3+x1,x4,x5);

Print +s;

.end

F =

+ f(x5,x1,x3 + x1,x4,x2)

+ f(3,1,6,2,4,5)

;

The permutation is generated with the same random number generator that is used by the function
random 8.57 and hence is susceptible to the same initialization procedure that can be executed
with the #setrandom 3.56 instruction.

8.59 rem

rem_(x1,x2) is replaced by the remainder of the division of x1 by x2. The arguments can be any
valid subexpressions, provided the whole function fits inside a term. When an argument is only an
active expression or a $-expression it is only expanded during the division. This way the contents of
such expressions can exceed the maximum term size. One should however realize that in that case
the operation takes place in allocated memory. This function replaces the experimental function
polyrem that existed in version 3.

8.60 replace

This function defines a rather general purpose replacement mechanism. It should have pairs of
arguments. Each pair consists of a single symbol, index, vector or function, followed by what
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this object should be replaced by in the entire term. Functions can only be replaced by functions,
indices only by indices. A vector can be replaced by a single vector or by a vector like expression. A
symbol can be replaced by a single symbol, a numerical expression or a complete subexpression that
is not index like or vector like. This mechanism is sometimes needed to make replacements in ways
that are very hard with the id statements because those do not make replacements automatically
inside function arguments (see 7.71). It also allows to exchange two variables as the replacements
are executed simultaneously by the wildcard substitution mechanism.

Multiply replace_(x,y,y,x);

will exchange x and y. Because there is no definite order in which multiple replace functions are
treated, one should not use more than a single one at the same time inside a term. At times
multiple replace functions may lead to confusion inside FORM.

8.61 reverse

Can only occur as an argument of a function. Is replaced by the reversed string of its own arguments.

8.62 root

If we have root_(n,x) and n is a positive integer and x is a rational number and y is a rational
number with yn = x (no imaginary numbers are considered and negative numbers are avoided if
possible. Only one root is given) then root_(n,x) is replaced by y. This function was originally
intended for internal use. Do not hold it against the author that root_(2,1) is replaced by 1.
In the case that it is needed the user should manipulate the sign or the complexity properties
externally.

8.63 setfun

Currently not active.

8.64 sig

Is replaced by the sign of the (numerical) argument, i.e. by -1 if there is a single negative argument
and by +1 if there is a single numerical argument that is greater or equal to zero.

8.65 sign

sign_(n) is replaced by (-1)^n if n is an integer.

8.66 sizeof

If there is a single argument and this argument is the name of an active (or previously active
during the current job) expression, the function is replaced by the number of FORM words in this
expression. Stored expressions that were entered via a load statement (see 7.85) are excluded from
this because for them this information is not readily available.
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8.67 sum

General purpose sum function. The first argument should be the summation parameter (a symbol).
The second argument is the starting point of summation, the third argument the ‘upper’ limit and a
potential fourth argument the increment. These numbers should all be integers. Summation stops
when the summation parameter obtains a value that has passed the upper limit. The last argument
is the summand, the object to be summed over. It can be any subexpression. If it contains the
summation parameter, it will be replaced by its value for each generated term. Examples:

sum_(j,1,4,sign_(j)*x^j/j)

sum_(i,1,9,2,sign_((i-1)/2)*x^i*invfac_(i))

8.68 sump

Special sum function. Its arguments are like for the sum function, but each new term is the
product of the previously generated term with the last argument in which the current value of the
summation parameter has been substituted. The first term is always one. Example:

Symbol i,x;

Local F = sump_(i,0,5,x/i);

Print;

.end

F =

1 + x + 1/2*x^2 + 1/6*x^3 + 1/24*x^4 + 1/120*x^5;

This function is a leftover from the Schoonschip days. The ordinary sum function is much more
readable.

8.69 table

For action the arguments should be the name of a table and then either the name of a function or
one symbol for each dimension of the table. In the case of the list of symbols the return value will
be a monomial in the given symbols in which the powers of the symbols correspond to the table
indices of the defined table elements with the coefficients the table contents corresponding to those
indices. In the case of a function name the return value will be a sum over terms in which the table
elements are indicated by arguments in the given function while these functions are then multiplied
by the corresponding table elements. This is one way to put a complete table inside an expression
and store it (with the save statement of 7.130) in a binary way for a future run in which the table
can be filled again with the fillexpression (see 7.60) statement. Note that for obvious reasons one
should avoid using symbols or functions that also occur inside the table definitions.

8.70 tbl

This function is the ‘table stub function’ as used by the tablebase construction. This is explained
in chapter 12. It is mainly for internal use, but it could occur in the output.
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8.71 term

This function has no arguments. It is replaced by the current term. It can be used to load the
current term into a dollar variable as in

$x = term_;

8.72 termsin

If there is a single argument and this argument is the name of an active (or previously active during
the current job) expression, the function is replaced by the number of terms in this expression.
Stored expressions that were entered via a load statement (see 7.85) are excluded from this because
for them FORM would have to actually count the terms.

8.73 termsinbracket

If there is no argument, or the single argument is zero, the function is replaced by the number of
terms in the current bracket, provided the expression has been bracketed at its last sort and a keep
brackets statement (see 7.82) has been used. Note that the terms have to be counted. Hence this
is a relatively expensive command. More options will be implemented in the future.

8.74 theta

If there is a single numerical argument x the function is replaced by one if x ≥ 0 and by zero if
x < 0. If there are two numerical arguments x1 and x2 the function is replaced by one if x1 = x2
or if the arguments are in natural order (if theta would be a symmetric function there would be
no reason to exchange the arguments) and by zero if the arguments are not in natural order (they
would be exchanged in a symmetric function). In all other cases nothing is done.

8.75 thetap

If there is a single numerical argument x the function is replaced by one if x > 0 and by zero if
x ≤ 0. If there are two numerical arguments x1 and x2 the function is replaced by zero if x1 = x2
or if the arguments are not in natural order. If the arguments are in natural order the function is
replaced by one. In all other cases nothing is done.

8.76 tofloat

Currently not active.

8.77 topologies

For a description of this function, please see the section on diagrams 21.

8.78 torat

Currently not active.
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8.79 Extra reserved names

In addition there are reserved function names for the common mathematical functions. Since
FORM 5.0, these functions can be evaluated numerically. See also chapter 22 on the floating point
system. These functions are:
sqrt The regular square root.

ln The natural logarithm.

eexp The exponential function.

gamma The gamma function.

agm The arithmetic-geometric mean function.

sin The sine function.

cos The cosine function.

tan The tangent function.

asin The inverse of the sine function.

acos The inverse of the cosine function.

atan The inverse of the tangent function.

atan2 Another inverse of the tangent function.

sinh The hyperbolic sine function.

cosh The hyperbolic cosine function.

tanh The hyperbolic tangent function.

asinh The inverse of the hyperbolic sine function.

acosh The inverse of the hyperbolic cosine function.

atanh The inverse of the hyperbolic tangent function.

li2 The dilogarithm function.

mzv The multiple zeta values.

euler The Euler sums.

mzvhalf The harmonic polylogarithms of argument 1/2.

In addition there are some names that have been reserved for future use.
lin The polylogarithm function.

hpl The harmonic polylogarithm function.

mpl The multiple polylogarithm function.

The user is allowed to use these functions, but it could be that in the future they will develop a
nontrivial behaviour. Hence caution is required.
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Chapter 9

Brackets

At times one would like to order the output in a specific way. In an expression which is for instance
a polynomial in terms of the symbol x, one might want to make this behaviour in terms of x more
apparent by printing the output in such a way, that all powers of x are outside parentheses, and
the whole rest is inside parentheses. This is done with the bracket statement:

Bracket x;

or in short notation

B x;

One can specify more than one object in the bracket statement, but only a single bracket statement
(the last one) is considered. Bracket statements belong to the module in which they occur. Hence
they are forgotten after the next end-of-module.

If a vector is mentioned in a bracket statement, all occurrences of this vector as a loose vector,
a vector with any index, inside a dotproduct, or inside a tensor are taken outside brackets. If the
vector occurs inside a non-commuting tensor, all other non commuting objects that are to the left
of this tensor will also be taken outside the parentheses.

When a function or tensor is mentioned in a bracket statement, it is not allowed to have any
arguments in the bracket statement. All occurrences of this function will be pulled outside brackets.
If the function is non-commuting, all other functions and/or tensors that are non-commuting and
are to the left of the specific function(s) or tensor(s) will also be outside parentheses.

The opposite of the bracket statement is the antibracket statement:

AntiBracket x;

or

ABracket x;

or

AB x;

This statement causes also brackets in the output, but now everything is put outside brackets, ex-
cept for powers of x and coefficients. This way one can make the x-dependence apparent differently.

Because the bracket statement causes a different ordering of the terms when storing the expres-
sion, one can use this ordering in the next module. There are various ways to do this.

One can use the contents of a given bracket in a r.h.s. expression as in
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Symbols a,b,c,x;

L F = a*x^2+b*x+c;

B x;

.sort

L Discriminant = F[x]^2-4*F[x^2]*F[1];

Print;

.end

The outside of the bracket is placed between braces after the name of the expression. The bracket
that has nothing outside is referred to with the number 1. If a bracket is empty, its contents will
be represented by the value zero.

The regular algorithm by which FORM finds brackets in an expression, is to start from the
beginning and inspect each term until it finds the appropriate bracket. This is fully in the spirit
of the sequential treatment of expressions in FORM. This can however be rather slow in big
expressions that reside on a disk. Hence there is the bracket index feature. It is invoked by putting
a +-sign after the bracket (or B) statement as in

Bracket+ x;

or

B+ x;

This option causes FORM to build a tree of (disk) positions for the different brackets, with the
condition that the whole storage of this tree of brackets does not exceed a given maximum space,
named ‘bracketindexsize’ (see chapter 17 on the setup parameters). If the index would need more
space FORM will start skipping brackets in the index. This means that it will have to look for the
bracket in a sequential fashion, but starting from the position indicated by the previous bracket in
the index. This will still be very fast, provided the index is not very small.

When the bracket index option is used, FORM will not compress the expressions that use such
an index with the zlib compression, even if the user asked for this in an earlier statement. The use
of the index indicates that the brackets are going to be used intensively, and hence the continuous
decompression that would result would destroy most of the profit that comes from the index. If
the brackets are only for cosmetics in the output, it is better not to use the index option. It does
use resources to construct the index tree. Also when brackets are only used sequentially as in the
features discussed below, the presence of the index is not beneficial. It should only be applied when
contents of brackets are used in the above way (like with the discriminant).

There are several statements that make use of the bracket ordering:

� Keep Brackets; This statement takes from the input one term at a time as usual, but then it
takes the part outside the brackets, executes the statements of the module only on that part
of the term, and then, when all statements of the module have had their effect, the resulting
term(s) is/are multiplied by the full content of the bracket. The next term taken from the
input will be the first term of the next bracket. This way one can hide part of the terms for
the pattern matcher. Also one can avoid that the same matching will occur many times, as
in an expression of the type

+ f(y)*(x+x^2+x^3+x^4+1)

If we would want to make a replacement of the type
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Keep Brackets;

id f?{f1,f2,f3}(u?) = f(u+1)/u;

the pattern matching and the substitution would have to be done only once, rather than 5
times, as would be the case if the Keep bracket statement would not be used.

� Collect FunctionName; The contents of the various brackets will be placed inside a function
with the given name. Hence

+ f(y)*(x+x^2+x^3+x^4+1)

+ f(y^2)*(x+2*x^2+3*x^3+4*x^4+1)

with

Collect h;

would result in:

+ f(y)*h(x+x^2+x^3+x^4+1)

+ f(y^2)*h(x+2*x^2+3*x^3+4*x^4+1)

This can be very useful to locate x-dependence even further, because bracketing the new
expression in terms of h could make very clear whether a given polynomial in x would factor
the whole expression, or which factors are occurring. To bring h(x+1) and h(2*x+2) to
multiples of the same objects one should consult the pages on the normalize (7.100) and
makeinteger (7.87) statements.

The Collect statement, together with the PolyFun statement, can also be very useful, if
the variable x (or other variables) is temporarily not playing much of a role in the pattern
matching. It can make the program much faster.

For more information on the collect statement one should consult section 7.20.

Restrictions: The bracket index can only be used with active expressions. Hence the access of
specific brackets in stored expressions will always be of the slow variety. To make it faster, one can
copy the expression into a local expression with indexed brackets, use it, and drop the expression
when it is not needed any longer.

The brackets can also be used to save space on the disk in problems in which the expressions
become rather large. Let us assume the following simple problem:

Symbols x1,...,x12;

Local F = (x1+...+x12)^10;

.sort

id x1 = x4+x7;

.end

If the program is run like this the expression F contains 352716 terms after the sort and after the
id the sorting in the .end results in a final stage sort of which the statistics are:
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Time = 46.87 sec

F Terms active = 504240

Bytes used = 13462248

Time = 52.09 sec Generated terms = 646646

F Terms in output = 184756

Bytes used = 4883306

We see, that the intermediate sort file still contains more than 500000 terms and more than 13
Mbytes, while the final result contains less than 5 Mbytes. Why is this? When the terms in FORM
are sorted first come the powers of x1, because this is the variable that was declared first. Hence
the terms that do not have powers of x1 come much later in the input and will not be compared
with the terms generated by the substitution of for instance a single power of x1 until very late in
the sorting. What can we do about this? We can try to group the terms in the first sort such that
after the substitution like terms will be ‘very close’ to each other and hence will add quickly. This
is done in the program

Symbols x1,...,x12;

Local F = (x1+...+x12)^10;

AntiBracket x1,x4,x7;

.sort

id x1 = x4+x7;

.end

Now all powers of the mentioned variables will be inside the brackets and all other variables will
be outside. Because the terms inside the brackets are all following each other in the input of the
second module, terms that will add will be generated closely together. The result is visible in the
final statistics:

Time = 47.23 sec

F Terms active = 184761

Bytes used = 4928008

Time = 48.40 sec Generated terms = 646646

F Terms in output = 184756

Bytes used = 4883306

Now the final step of the sorting has already almost the proper number of terms. The difference is
due to brackets that are half in one ‘patch’ on the disk and half in the next ‘patch’ (for the meaning
of the patches, one should read the part about sorting in chapter 17 on the setup file. It should
be rather clear now that this saves disk space and the corresponding amount of time. These early
cancellations can also be seen in the first statistics message of the second module. In the first case
it is

Time = 19.76 sec Generated terms = 10431

F 5216 Terms left = 8065

Bytes used = 239406

and in the second case it is

Time = 22.82 sec Generated terms = 10124

F 5835 Terms left = 3186

Bytes used = 96678

179



This also causes a more efficient use of the large buffer and again a better use of the disk. There
have been cases in which this ‘trick’ was essential to keep the sort file inside the available disk
space.
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Chapter 10

Output optimization

One of the uses of symbolic programs is to prepare formulas for further numerical processing.
Technically speaking such processing is not part of computer algebra, although some packages may
provide facilities for this. In FORM such facilities, such as Monte Carlo integration, do not exist at
the moment, but, starting with version 4.1, FORM does provide statements to construct outputs
in C or Fortran that are highly optimized with respect to the number of arithmetic operations that
are needed for their evaluation. The algorithms used for this are described in the papers

� Code Optimization in FORM - https://arxiv.org/abs/1310.7007

� Improving multivariate Horner schemes with Monte Carlo tree search - https://arxiv.org/
abs/1207.7079

� Combining Simulated Annealing and Monte Carlo Tree Search for Expression Simplification
- https://arxiv.org/abs/1312.0841

� Why Local Search Excels in Expression Simplification - https://arxiv.org/abs/1409.5223

In short, an optimal Horner scheme is constructed after which common subexpressions are elimi-
nated. The methods for finding the optimal scheme can use a simple heuristic, Monte Carlo Tree
Search, or a Stochastic Local Search approach such as Simulated Annealing

In this section the precise format of the commands that concern the optimizations will be
described. In optimized output FORM needs temporary variables. In order to avoid conflicts with
user defined objects FORM uses the extra symbols 7.55 for these variables. This means that the
user can control their output representation in the standard way. In addition there are preprocessor
variables that tell how many of these extra symbols were needed:

optimminvar The number of extra symbols before the optimization process started.

optimmaxvar The number of extra symbols after the optimization process finished.

Each new optimization will remove the old optimization results and start the extra symbols from
the number there were before the optimization started. Because this may cause interference with
the functioning of the extrasymbol statement, regular printing with output optimization and the
extrasymbol statement cannot occur inside the same module. Such occurrence would result in an
error message.

Because the output optimization is done for expressions that contain only symbols, FORM
has to convert all non-symbols and negative powers of symbols to extra symbols before it starts
the optimization. This is another reason why interference between the extrasymbol 7.55 statement
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and output optimizations is forbidden. When the results are printed, the definition of the extra
symbols that are introduced this way are printed as well.

FORM has two ways to perform optimizations. The first and easiest is in the regular output.
If one asks for optimization (by specifying the proper format for this) and follows this by a print
statement, the output printed will be in optimized form. This is however just a representation of
the expression and the next module will obtain the original expression for its input.

The more useful way to obtain an optimized output is with the #optimize instruction. To use
this instruction properly one should understand what FORM does when it optimizes an expression.
The whole process of optimization takes place inside the memory. Hence, FORM cannot optimize
expressions that do not fit inside the CPU memory. The notation is however fairly compact and
FORM needs far less space than for instance the compiler (and gives better results). The result
of the optimization is stored inside a buffer. There is only a single optimization buffer and the
preprocessor variables optimminvar and optimmaxvar refer to the contents of this buffer. When
the #optimize instruction is used it loads this buffer and the contents stay around until either a
#clearoptimize instruction is used or a new #optimize instruction is issued.

The #optimize instruction changes the original expression to its optimized shape in which it
is usually a very short expression that refers to one or more extra symbols. The optimization
information is automatically erased, and with it the expression that was optimized, when a second
#optimize instruction is issued. Clearing the optimization buffer means that the information of
the first expression is irretrievably lost and the contents of the first expression become meaningless,
because its extra symbols have been erased. Hence if the user still needs this expression it is
necessary to make a copy of it before optimization.

The optimization buffers, and the optimized expression, can be removed by the user with the
#clearoptimize instruction. This is mandatory before the use of a ToPolynomial 7.153 statement,
because that may introduce new extra symbols.

The contents of the optimization buffer can be written with the %O combination in the format
string in the #write instruction. This means that it is easy to write this output to file. Consider
for instance the following program:

CF f;

S a,b,c;

L H = f(a)+f(b)+(a+b+c)^2;

L G = f(c)+(a+b+c)^3;

Format O2;

Print +f;

.sort

ExtraSymbols,array,w;

Format Fortran;

#optimize G

#write <outg.f> " REAL*8 w(‘optimmaxvar_’)"

#write <outg.f> "%O"

#write <outg.f> " G = %e",G

#clearoptimize

.sort

#optimize H

#write <outh.f> " REAL*8 w(‘optimmaxvar_’)"

#write <outh.f> "%O"

#write <outh.f> " H = %e",H

.end
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This program shows the two different methods and shows what is left of the expressions G and H.
It also shows that we have to deal with the expressions one by one when we use the #optimize
instruction, while in the regular printing of the output this is not needed because the expression
itself remains in its unoptimized version.

10.0.1 Optimization options of the Format statement

The Format statement has a number of options to control the code optimization. The easiest to
use are the following:

O0 Switches off all optimizations and prints the output the normal FORM way. This is the
default.

O1 Activates the lowest level of optimization. It is very fast, i.e., linear in the size of the expression,
and gives reasonably efficient code.

O2 Activates the medium level of optimization. This is slower than the previous setting, but
usually gives better results.

O3 Activates the highest level of optimization using MCTS. It can be rather slow, but usually
gives even better results.

O4 Activates the highest level of optimization using Local Stochastic Search. It is usually much
faster than MCTS and may give better results.

Below we show how to use O4 and how it compares to O2:

#-

S a,b,c,d,e,f,g,h,i,j,k,l,m,n;

L G = (4*a^4+b+c+d + i^4 + g*n^3)^10 +

(a*h + e + f*i*j + g + h)^8 + (i + j + k + l + m + n)^12;

L H = G;

Format O2;

.sort

#optimize G

#write "Optimized with O2:"

#write "Optimized with Horner scheme: ‘optimscheme_’"

#write "Number of operations in output: ‘optimvalue_’"

#clearoptimize

.sort

Format O4,saIter=1000; * use 1000 iterations for optimization

#optimize H

#write "Optimized with O4:"

#write "Optimized with Horner scheme: ‘optimscheme_’"

#write "Number of operations in output: ‘optimvalue_’"

.end

which gives the output:

Optimized with O2:

Optimized with Horner scheme: i,n,j,m,l,k,g,a,d,c,b,h,f,e
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Number of operations in output: 2578

Optimized with O4:

Optimized with Horner scheme: m,h,k,a,l,e,n,g,j,c,f,b,i,d

Number of operations in output: 1937

The preprocessor variable optimscheme gives the best Horner scheme that the program found
and the preprocessor optimvalue gives the number of arithmetic operations in the resulting ex-
pression.

These levels of optimization refer to some default settings of all controlling parameters. These
default values are in Tab. 10.1. It is also possible to set each parameter individually to fine-tune
the optimization process. The parameters that can be set are divided in several categories. First,
it is possible to set which Horner schemes are tried:

Horner=(Occurrence | MCTS | SA) Determines whether an occurrence order Horner scheme
is used, or whether MCTS, or Stochastic Local Search is employed to find Horner schemes.

HornerDirection=(Forward | Backward | ForwardOrBackward | ForwardAndBack-
ward) Forward makes that the MCTS search in the O3 option will determine the outermost
variables in the multivariate Horner scheme first and then work its way inward. In the case of
backward, the tree search determines the innermost variable first. In some cases this can give
much better results when there are many common subexpressions involving a limited number
of variables. ForwardOrBackward tries both of these schemes. ForwardAndBackward fills
the order from both sides simultaneously, resulting in more options, but also a much larger
search tree. If there are many variables, it could make the search tree too large to obtain
good results.
When the option Horner=Occurrence is used the option backward will switch to something
called ‘anti-occurrence’ which means that the most frequent variable corresponds to the in-
nermost brackets.

In the case of MCTS there are various parameters that can control the search process:

MCTSConstant=<value> This sets the constant CP in the UCT formula that governs the
Monte Carlo tree search. It is supposed to be given as a real number with a decimal point
(no floating point notation that includes powers).

MCTSNumExpand=<value> The number of times the tree is traversed and hence the number
of times that a Horner scheme is constructed.

MCTSNumKeep=<value> During the MCTS procedure FORM only tries to construct a
proper ordering for the Horner scheme, followed by a common subexpression elimination
in the style of the O1 option. The best ‘value’ schemes are remembered and for those a com-
mon subexpression elimination in the style of the O2 option is done afterward. This second
style elimination is far more costly. In nearly all cases the best O2-style scheme is in the very
few top O1-style schemes.

MCTSNumRepeat=<value> Sometimes it is more advantageous to run a new tree search
several times, each with a smaller number of expansions. This parameter tells how many
times we will run with a new tree. The total number of tree traversals is the product of
MCTSNumRepeat and MCTSNumExpand.
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MCTSNumExpand=<value1*value2> Makes FORM to run ‘value1’ trees, each with ‘value2’
Horner scheme constructions. Hence this option is equivalent to the combination
MCTSNumRepeat=<value1>, MCTSNumExpand=<value2>.

MCTSTimeLimit=<value> The maximum time in seconds that is used when searching through
the tree.

MCTSDecayMode=<value> Determines how the CP parameter in the UCT formula decreases:

value effect

0 no decay
1 linear decay with iteration number
2 faster decay for the final iterations
3 decrease with iteration number and with node depth

For Stochastic Local Search the following parameters can be set:

saIter=<value> Number of optimization steps that will be performed. This has the most influ-
ence on the quality of the simplification. The default value is 1000.

saMaxT=<value> Maximum temperature used in Simulated Annealing. The higher the tem-
perature, the more exploration occurs. The default value is 2000.

saMinT=<value> Minimum temperature used in Simulated Annealing. The lower the temper-
ature, the more exploitation occurs. The default value is 1.

The cooling rate from saMaxT to saMinT is exponential in saIter. More information can be found
in the research papers.

The Horner methods generate a number of Horner schemes: one or two in the case of occurrence
order schemes, depending of the direction parameter, and a number equal to MCTSNumKeep in
the case of MCTS. Next, for each stored Horner scheme other optimizations are performed as
determined by the following parameter:

Method=(None | CSE | Greedy | CSEGreedy) Determines what method is used for opti-
mizing the generated Horner schemes. CSE performs a simple common subexpression elimi-
nation and Greedy performs greedy optimizations (see the paper for more explanations) which
are more sophisticated versions of CSE’s. CSEGreedy performs CSE followed by greedy opti-
mizations; usually this is somewhat faster than just greedy optimizations, but it gives slightly
worse results. The option None does nothing after applying the Horner scheme and is only
useful for debugging purposes.

When the method of greedy optimizations is used, repeatedly all potential optimizations are
determined and a few of them are performed. The following parameters are used to tune the greedy
method:

GreedyMaxPerc The percentage of the possible optimizations that is performed.

GreedyMinNum The minimum number of possible optimizations that is performed.

GreedyTimeLimit The maximum time in seconds that is spent in the process of greedy opti-
mization.
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There are also two more general settings:

Stats=(On | Off) This parameter determines whether statistics of the optimization are shown.
Statistics are printed in the format

*** STATS: original 1P 16M 5A : 23

*** STATS: optimized 0P 10M 5A : 15

in which P indicates power operations (at least a third power), M the number of multiplica-
tions and A the number of additions/subtractions. The last number is the total number of
operations in which an n-th power counts as n− 1 operations.

TimeLimit=<value> This set both the MCTSTimeLimit and the GreedyTimeLimit to half of
the given value.

Finally there are some parameters that are of a rather specialized nature. They can be used for
debugging purposes or in the case that one knows already what is the best Horner scheme. Their
default values are Off.

DebugFlag=(On | Off) In the case that the value is On, the list of temporary variables is
printed in reverse order with the string ”id ” in front. This makes them into a set of FORM
substitutions that undo the optimizations. One can use this for instance to make sure that
the optimized code is identical to the original.

PrintScheme=(On | Off) This option (when On) will print the Horner scheme. That is the
order in which the variables were taken outside parentheses.

Scheme=(list of symbols) The list should be enclosed by parentheses and the symbols should
be separated by either blanks or comma’s. This option will fix the Horner scheme to be used.
One could for instance use the output of the PrintScheme option for this to avoid a lengthy
search when a good order of the variables is already known. Things become a bit tricky when
extra symbols are involved. One should make sure that their labelling is identical to when
the scheme was created! When extra symbols are used in their array/vector notation, one
needs to separate them by comma’s, because blank spaces next to parentheses are eliminated
by the preprocessor. If one specifies the wrong number of variables, the results can be quite
unpredictable. At the moment of compilation FORM does not know the variables that
are actually used. The safe thing is to verify the actual variables with a testrun using the
PrintScheme option in the O1 mode.

All options should be specified in a single format statement and be separated either by commas
or blank spaces. When Format Optimize is used, first the default settings are taken and then
the options that are specified overwrite them. It is allowed to have the O1, O2, O3, O4 opti-
mization specifications followed by options. In that case the program first sets the values of those
specifications and then modifies according to what it encounters in the rest of the statement.
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O1 O2 O3 (default) O4 (default)

Horner occurrence occurrence MCTS SA
HornerDirection OR OR OR OR
MCTSConstant — — 1.0 —
MCTSNumExpand — — 1000 —
MCTSNumKeep — — 10 —
MCTSNumRepeat — — 1 —
MCTSTimeLimit — — 0 —
MCTSDecayMode — — 1 —
saIter — — — 1000
saMinT — — — 1
saMaxT — — — 2000
Method cse greedy greedy greedy
GreedyMinNum — 10 10 10
GreedyMaxPerc — 5 5 5
GreedyTimeLimit — 0 0 0
Stats off off off off
TimeLimit 0 0 0 0

Table 10.1: Values for the various parameters in the predefined optimization levels. OR stands for
ForwardOrBackward.
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Chapter 11

Polynomials and Factorization

Starting with version 4, FORM is equipped with powerful handling of rational polynomials and
with factorization capabilities. Because this creates many new possibilities, it brings a whole new
category of commands with it. We will list most of these here.
First there are the rational polynomials. These work a bit like the PolyFun 7.113, but now with
two arguments: a numerator and a denominator. Instead of PolyFun the function is designated as
PolyRatFun 7.114 as in the example below:

Symbol x,y;

CFunction rat;

PolyRatFun rat;

L F = rat(x+y,x-y)+rat(x-y,x+y);

Print;

.end

F =

rat(2*x^2 + 2*y^2,x^2 - y^2);

Dealing with a PolyRatFun can be very handy, but one should realize that there is a limit to the
size of the arguments, because the PolyRatFun with its arguments is part of a term and hence is
limited by the maximum size of a term 17. One should also take into account that the manipulation
of multivariate polynomials, and in particular the GCD operation, can be rather time consuming.
The PolyRatFun has one limitation as compared to the regular PolyFun: in its arguments one
may use only symbols. Of course FORM is equipped with a mechanism to replace other objects
by extra internally generated symbols 7.55. One could imagine FORM to automatically convert
these objects to symbols, do the polynomial arithmetic and then convert back. This is done with
factorization and the gcd 8.31, div 8.13 and rem 8.59 functions. But because the addition of
PolyRatFun’s is such a frequent event, this would be very costly in time. Hence it is better that
the user does this once in a controlled way.
The PolyFun and PolyRatFun declarations are mutually exclusive. The PolyRatFun is considered
a special type of PolyFun and there can be only one PolyFun at any moment. If one wants to
switch back to a mode in which there is neither a PolyFun nor a PolyRatFun one can use

PolyRatFun;

to indicate that after this there is no function with that status.
When a PolyRatFun has only a single argument, this argument is interpreted as the numerator of
a fraction. FORM will add automatically a second argument which has the value 1.
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The second important polynomial facility is factorization. This is not necessarily something trivial.
First of all, with very lengthy multivariate input, this can be unpractically slow. Second of all,
there are various types of objects that we may factorize and each has its special needs. One of
those needs is access to the factors, which is different for the factors of function arguments, of
$-expressions or even complete expressions. In addition $-expressions should be factorizable either
from the preprocessor or on a term by term basis. Let us start with function arguments.
One can factorize function arguments with the FactArg statement 7.56. The factors are each
represented by a separate argument as in

Symbol x,y;

CFunction f1,f2;

Local F = f1(x^4-y^4)+f2(3*y^4-3*x^4);

FactArg,f1,f2;

Print;

.end

F=

f1(y-x,y+x,y^2+x^2,-1)+f2(y-x,y+x,y^2+x^2,3);

Overall constants and overall signs are taken separately as one can see. If one wants the factors in
separate functions one can use the ChainOut 7.16 command as in

Symbol x,y;

CFunction f1,f2;

Local F = f2(3*y^4-3*x^4);

FactArg,f2;

Print;

.sort

F=

f2(y-x,y+x,y^2+x^2,3);

ChainOut,f2;

id f2(x?number_) = x;

Print;

.end

F=

3*f2(y-x)*f2(y+x)*f2(y^2+x^2);

Factorization of expressions is a bit more complicated. Clearly this cannot be a command at
the term level. Hence we had two options on how to implement this. One would have been
as a preprocessor instruction, which we did not select, and the other is as some type of format
statement, which is what we did opt for. In the case we factorize an expression, the original
unfactorized expression is replaced by the factorized version. After that we keep the factorized
version only and that may bring some restrictions with it. Of course, in the same way one can
factorize an expression, one can unfactorize it. The corresponding statements are Factorize 7.58,
NFactorize 7.96, UnFactorize 7.162 and NUnFactorize 7.106. These statements are used at the
end of the module in the same place as one might use the bracket statement 7.11. It should be
noticed however that a factorized expression will never apply the bracket mechanism. They are
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mutually exclusive, because internally we use the bracket mechanism with a built in symbol factor
to indicate the factors. Here is an example:

Symbol x,y;

Local F = x^4-y^4;

Print;

.sort

Time = 0.00 sec Generated terms = 2

F Terms in output = 2

Bytes used = 64

F=

-y^4+x^4;

Print;

Factorize F;

.end

Time = 0.00 sec Generated terms = 2

F Terms in output = 2

Bytes used = 64

Time = 0.00 sec Generated terms = 7

F Terms in output = 7

factorize Bytes used = 288

F=

(-1)

*(y-x)

*(y+x)

*(y^2+x^2);

We have printed the statistics in this example to show that the factorization prints its own statistics.
This factorization is executed after the expression has been completed and before manipulations
on the next expression start. This way it is possible to overwrite the first output by the factorized
output and we do not loose diskspace unnecessarily.
The next question is of course how to find out how many factors an expression has and how to
access individual factors. There is a function numfactors which gives the number of factors in an
expression:

Symbol x,y;

Local F1 = x^4-y^4;

Local F2 = 0;

Local F3 = 1;

Local F4 = x^4-y^4;

Print;

Factorize F1,F2,F3;

.sort
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F1=

(-1)

*(y-x)

*(y+x)

*(y^2+x^2);

F2=0;

F3=

(1);

F4=

-y^4+x^4;

#do i = 1,4

#$n‘i’ = numfactors_(F‘i’);

#message expression F‘i’ has ‘$n‘i’’ factors

~~~expression F1 has 4 factors

#enddo

~~~expression F2 has 1 factors

~~~expression F3 has 1 factors

~~~expression F4 has 0 factors

.end

As we see, an expression that is zero still gives one factor when it is factorized. When the expression
is not factorized it will return 0 in all cases. The factors can be accessed easily once one knows
that the factors are stored by means of the bracket mechanism and the n-th factor is the bracket
with the n-th power of the symbol factor outside the bracket:

Symbol x,y;

Local F = x^4-y^4;

Factorize F;

.sort

#$n = numfactors_(F);

#do i = 1,‘$n’

Local F‘i’ = F[factor_^‘i’];

#enddo

Print;

.end

F=

(-1)

*(y-x)

*(y+x)

*(y^2+x^2);

F1=

-1;
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F2=

y-x;

F3=

y+x;

F4=

y^2+x^2;

It is also possible to put an expression in the input in a factorized format. For this we have the
LocalFactorized 7.84 and GlobalFactorized 7.66 commands. These commands can be abbreviated
to LFactorized, GFactorized or even LF and GF. One should notice that these commands do not
execute a factorization. They accept the factors as the user provides them:

Symbol x,y;

LocalFactorize E = -(x+1)*(x+2)*((x+3)*(x+4));

Print;

.end

E =

( - 1 )

* ( 1 + x )

* ( 2 + x )

* ( 12 + 7*x + x^2 );

This can go to some extremes when we feed in expressions containing powers and expressions that
are potentially already factorized:

Symbol x,y;

LocalFactorize E = -(x+1)*(x+2)*((x+3)*(x+4));

Local F = -(x+1)*(x+2)*((x+3)*(x+4));

Print;

.sort

E=

(-1)

*(1+x)

*(2+x)

*(12+7*x+x^2);

F=

-24-50*x-35*x^2-10*x^3-x^4;

LF G = (x-1)*(x+2)^2*E^2*F^2;

Print G;

.end

G=

(-1+x)

*(2+x)
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*(2+x)

*(-1)

*(1+x)

*(2+x)

*(12+7*x+x^2)

*(-1)

*(1+x)

*(2+x)

*(12+7*x+x^2)

*(-24-50*x-35*x^2-10*x^3-x^4)

*(-24-50*x-35*x^2-10*x^3-x^4);

To put some order in this one may factorize the new expression again:

Symbol x,y;

LocalFactorize E = -(x+1)*(x+2)*((x+3)*(x+4));

Local F = -(x+1)*(x+2)*((x+3)*(x+4));

.sort

LF G = (x-1)*(x+2)^2*E^2*F^2;

Print G;

Factorize G;

.end

G=

(-1+x)

*(1+x)

*(1+x)

*(1+x)

*(1+x)

*(2+x)

*(2+x)

*(2+x)

*(2+x)

*(2+x)

*(2+x)

*(3+x)

*(3+x)

*(3+x)

*(3+x)

*(4+x)

*(4+x)

*(4+x)

*(4+x);

In this case all constants are multiplied, all factors are factorized, and all factors in the new format
are sorted.
The case that one or more factors are zero is special. In principle the zero factors are kept as in:

Symbol x,y;

LocalFactorize E = -0*(x+1)*(x+2)*0*((x+3)*(x+4));
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Print;

.end

E=

(-1)

*(0)

*(1+x)

*(2+x)

*(0)

*(12+7*x+x^2);

This way one can see what has happened when a substitution makes a factor zero. When we
factorize this expression again however the whole expression becomes zero. If this is not intended
and one would like to continue with the factors that are nonzero we have the keepzero option in
the factorize statement as in:

Symbol x,y;

Format Nospaces;

LocalFactorize E = -0*3*(x+1)*(x+2)/2*0*((x+3)*(x+4));

Print;

.sort

E=

(-1)

*(0)

*(3)

*(1+x)

*(2+x)

*(1/2)

*(0)

*(12+7*x+x^2);

Print;

Factorize(keepzero) E;

.end

E=

(0)

*(-3/2)

*(1+x)

*(2+x)

*(3+x)

*(4+x);

We see here that first all constants are separate factors and the new factorization combines them.
The keepzero option does the same with the factors that are zero. The zero factor will always be
the first. Hence it is rather easy to test for whether the total expression should actually be zero.
We just have to look whether E[factor_] is zero.
The unfactorize 7.162 statement is the opposite of the factorize statement. It takes the factorized
expression and multiplies out the factors. It also uses the current brackets for formatting the
output.
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Symbol x,y;

LFactorized F = (x+1)*(x+y)*(y+1);

Print;

.sort

F=

(1+x)

*(y+x)

*(1+y);

Print;

Bracket x;

UnFactorize F;

.end

F=

+x*(1+2*y+y^2)

+x^2*(1+y)

+y+y^2;

In principle there are various models by which the unfactorization can be done in an efficient way.
In addition it would be less efficient when the master would do all the work as is the case with the
factorize statement. Currently this statement is still being developed internally. It is possible to
make ones own emulation of it. Here we give the ‘brute force’ way:

Symbol x,y;

LFactorized F = (x+1)*(x+y)*(y+1);

Print;

.sort

F=

(1+x)

*(y+x)

*(1+y);

#$num = numfactors_(F);

Local G = <F[factor_^1]>*...*<F[factor_^‘$num’]>;

Bracket x;

Print;

.end

F=

(1+x)

*(y+x)

*(1+y);

G=

+x*(1+2*y+y^2)

+x^2*(1+y)
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+y+y^2;

Factorization of $-expressions is yet a different thing. The $-expressions do not have a bracket
mechanism. Hence we need different ways of storing the factors. In the case of expressions we have
to work in a way that is potentially disk based. With $-expressions we work in allocated memory.
Hence we also store the factors in allocated memory. In that case we can keep both the original
and the factors. The factors are accessed by referring to their number between braces. The number
zero refers to the number of factors:

Symbol x,y;

CFunction f;

Off Statistics;

#$a = x^4-y^4;

Local F = f(x^4-y^4)+f(x^6-y^6);

Print;

.sort

F=

f(-y^4+x^4)+f(-y^6+x^6);

#factdollar $a;

#do i = 1,‘$a[0]’

#write <> "Factor ‘i’ of ‘$a’ is ‘$a[‘i’]’"

Factor 1 of -y^4+x^4 is -1

#enddo

Factor 2 of -y^4+x^4 is y-x

Factor 3 of -y^4+x^4 is y+x

Factor 4 of -y^4+x^4 is y^2+x^2

id f(x?$b) = f(x);

FactDollar $b;

do $i = 1,$b[0];

Print "Factor %$ of %$ is %$",$i,$b,$b[$i];

enddo;

Print;

ModuleOption noparallel; * suppresses noparallel warning with TFORM

.end

Factor 1 of -y^4+x^4 is -1

Factor 2 of -y^4+x^4 is y-x

Factor 3 of -y^4+x^4 is y+x

Factor 4 of -y^4+x^4 is y^2+x^2

Factor 1 of -y^6+x^6 is -1

Factor 2 of -y^6+x^6 is y-x

Factor 3 of -y^6+x^6 is y+x

Factor 4 of -y^6+x^6 is y^2-x*y+x^2

Factor 5 of -y^6+x^6 is y^2+x*y+x^2

F=

f(-y^4+x^4)+f(-y^6+x^6);

We see here a variety of new features. The preprocessor can factorize $a with the #FactDollar
instruction. We do indeed pick up the number of factors in the preprocessor as ‘$a[0]’ and the
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factors themselves as ‘$a[1]’ etc. For the $-variable that needs to be manipulated during running
time things as a bit more complicated. We define $b as part of a wildcard pattern matching. This
is still rather normal. Then we use the FactDollar statement. Notice that for each term we will
have a different $b. To access the factors we cannot use the preprocessor methods because those
are only available at compile time. Hence we cannot use the preprocessor #do instruction and
therefore we need an execution time do statement. The loop parameter will have to be a $-variable
as well. The do statement and the print statement show now how one can use the factors. In the
output one can see that indeed we had two different contents for $b. And the arguments of the
function f remain unaffected.
One may also ask for the number of factors in a $-expression with the numfactors function as in:

Symbol x,y;

CFunction f;

Format Nospaces;

#$a = x^4-y^4;

#factdollar $a;

Local F = f(numfactors_($a))

+f(<$a[1]>,...,<$a[‘$a[0]’]>);

Print;

.end

F=

f(-1,y-x,y+x,y^2+x^2)+f(4);

Note that in the second case we need to use the construction ‘$a[0]’ because the preprocessor needs
to substitute the number immediately in order to expand the triple dot operator. This cannot wait
till execution time.
Some remarks.
The time needed for a factorization depends strongly on the number of variables used. For example
factorization of x60 − 1 is much faster than factorization of x60 − y60. One could argue that the
second formula can be converted into the first, but there is a limit to what FORM should do and
what the user should do.

Symbol x,y;

Format NoSpaces;

On ShortStats;

Local F1 = x^60-1;

Local F2 = y^60-x^60;

Factorize F1,F2;

Print;

.end

0.00s 1> 2--> 2: 52 F1

0.07s 1> 51--> 51: 1524 F1 factorize

0.07s 1> 2--> 2: 64 F2

1.17s 1> 51--> 51: 1944 F2 factorize

F1=

(-1+x)

*(1-x+x^2)
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*(1-x+x^2-x^3+x^4)

*(1-x+x^3-x^4+x^5-x^7+x^8)

*(1+x)

*(1+x+x^2)

*(1+x+x^2+x^3+x^4)

*(1+x-x^3-x^4-x^5+x^7+x^8)

*(1-x^2+x^4)

*(1-x^2+x^4-x^6+x^8)

*(1+x^2)

*(1+x^2-x^6-x^8-x^10+x^14+x^16);

F2=

(y-x)

*(y+x)

*(y^2-x*y+x^2)

*(y^4-x*y^3+x^2*y^2-x^3*y+x^4)

*(y^4+x*y^3+x^2*y^2+x^3*y+x^4)

*(y^2+x*y+x^2)

*(y^2+x^2)

*(y^8-x*y^7+x^3*y^5-x^4*y^4+x^5*y^3-x^7*y+x^8)

*(y^8+x*y^7-x^3*y^5-x^4*y^4-x^5*y^3+x^7*y+x^8)

*(y^8-x^2*y^6+x^4*y^4-x^6*y^2+x^8)

*(y^4-x^2*y^2+x^4)

*(y^16+x^2*y^14-x^6*y^10-x^8*y^8-x^10*y^6+x^14*y^2+x^16);

When one has a factorized expression and one uses the multiply statement, all terms in the factor-
ized expression are multiplied the specified amount. This may lead to a counterintuitive result:

Symbols a,b;

LF F = (a+b)^2;

multiply 2;

Print;

.end

F =

( 2*b + 2*a )

* ( 2*b + 2*a );

This is a consequence of the way we store the factors. This way each factor will be multiplied by
two. If one would like to add a factor one can do this by the following simple mechanism:

Symbols a,b;

LF F = (a+b)^2;

.sort

LF F = 2*F;

Print;

.end

F =

( 2 )
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* ( b + a )

* ( b + a );

In version 3 there were some experimental polynomial functions like polygcd . These have been
removed as their functionality has been completely taken over by the new functions gcd 8.31,
div 8.13 and rem 8.59 and some statements like normalize 7.100, makeinteger 7.87 and factarg 7.56.
Unlike regular functions, the functions gcd , div and rem have the peculiarity that if one of the
arguments is just an expression or a $-expression, this expression is not evaluated until the function
is evaluated. This means that the evaluated expression does not have to fit inside the maximum size
reserved for a single term. In some cases, when the gcd function is invoked with many arguments,
the expression may not have to be evaluated at all! The GCD of the other arguments may be one
already.
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Chapter 12

The TableBase

The tablebase statement controls a database-like structure that allows FORM to control massive
amounts of data in the form of tables and table elements. The contents of a tablebase are formed
by one or more table declarations and a number of fill statements. These fill statements however
are not immediately compiled. For each fill statement a special fill statement is generated and
compiled that is of the form

Fill tablename(indices) = tbl_(tablename,indices,arguments);

The function tbl is a special function to make a temporary table substitution. It indicates that
the corresponding element can be found in a tablebase that has been opened. At a later stage one
can tell FORM to see which table elements are actually needed and then only those will be loaded
from the tablebase and compiled.

Tablebases have a special internal structure and the right hand sides of the fill statements are
actually stored in a compressed state. These tablebases can be created with special statements and
uploaded with any previously compiled table. Hence one can prepare a tablebase in a previous job,
to be used at a later stage, without the time penalty of loading the whole table at that later stage.

Assume we have a file named no11fill.h that loooks like

Symbols ...;

Table,sparse,no11fill(11,N?);

Fill no11fill(-3,1,1,1,1,1,1,1,0,0,0) = ....

Fill no11fill(-2,1,1,1,1,1,1,1,0,0,0) = ....

etc.

It should be noted that only sparse tables can be stored inside a tablebase. The right hand sides
could be typically a few kilobytes of formulas and there could be a few thousand of these fill
statements. To make this into a tablebase one would use the program

#-

#include no11fill.h

#+

TableBase "no11.tbl" create;

TableBase "no11.tbl" addto no11fill;

.end

The include instruction makes that FORM reads and compiles the table. Then the first tablebase
statement creates a new tablebase file by the name no11.tbl. If such a file existed already, the old
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version will be lost. If one would like to add to an existing tablebase, one should use the ‘open’
keyword. The second tablebase statement adds the table no11fill to the tablebase file no11.tbl.
This takes care of declaring the table, making an index of all elements that have been filled and
putting their right hand sides, in compressed form, into the tablebase. The compression is based
on the zlib library, provided by Jean-loup Gailly and Mark Adler (version 1.2.3, July 18, 2005) and
it strikes a nice balance between speed and compression ratio.

The tablebase can be loaded in a different program as in

TableBase "no11.tbl" open;

This loads the main index of the file into memory. To protect against accidentally adding additional
table to an existing tablebase or in case tablebases are stored in shared directories where not all
users have write access, they can be opened using

TableBase "no11.tbl" open, readonly;

Trying to add tables to a tablebase opened in read-only mode results in an error.
If one would like to compile the short version of the fill statements (the normal action at this

point) one needs to use the load option. Without any names of tables it will read the index of
all tables. If tables are specified, only the index of those tables is taken and the proper tbl fill
statements are generated:

TableBase "no11.tbl" open;

TableBase "no11.tbl" load no11fill;

If one would like to compile the complete tables, rather than just the shortened versions, one
can use the enter option as in:

TableBase "no11.tbl" open;

TableBase "no11.tbl" enter no11fill;

Let us assume we used the load option. Hence now an occurrence of a table element will be
replaced by the stub-function tbl . In order to have this replaced by the actual right hand side of
the original fill statement we have to do some more work. At a given moment we have to make
FORM look which elements are actually needed. This is done with the TestUse statement as in

TestUse no11fill;

This does nothing visible. It just marks internally which elements will be needed and have not
been entered yet.

The actual entering of the needed elements is done with the use option:

TableBase "no11.tbl" use;

If many elements are needed, this statement may need some compilation time. Note however that
this is time at a moment that it is clear that the elements are needed, which is entirely different
from a fixed time at the startup of a program when the whole table is loaded as would have to be
done before the tablebase statement existed. Usually however only a part of the table is needed,
and in the extreme case only one or two elements. In that case the profit is obvious.

At this point the proper elements are available inside the system, but because we have two
versions of the table (one the short version with tbl , the other the complete elements) we have to
tell FORM to apply the proper definitions with the ‘apply’ statement.
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Apply;

Now the actual rhs will be inserted.
One may wonder why this has to be done in such a ‘slow’ way with this much control over the

process. The point is that at the moment the table elements are recognized, one may not want
the rhs yet, because it may be many lines. Yet one may want to take the elements away from the
main stream of action. Similarly, having a table element recognized at a certain stage, may not
mean automatically that it will be needed. The coefficient may still become zero during additional
manipulations. Hence the user is left with full control over the process, even though that may lead
to slightly more programming. It will allow for the fastest program.

For the name of a tablebase we advise the use of the extension .tbl to avoid confusion.
Note that the above scheme may need several applications, if table elements refer in their

definition to other table elements. This can be done with a construction like:

#do i = 1,1

TestUse;

.sort

TableBase "basename.tbl" use;

Apply;

if ( count(tbl_,1) ) Redefine i "0";

.sort

#enddo

It will stay in the loop until there are no more tbl functions to be resolved.

The complete syntax (more is planned):

12.1 addto

Syntax:
TableBase ”file.tbl” addto tablename;
TableBase ”file.tbl” addto tablename(tableelement);

See also open (12.9) and create (12.4).
Adds the contents of a (sparse) table to a tablebase. The base must be either an existing tablebase
(made accessible with an open statement) or a new tablebase (made available with a create state-
ment). In the first version what is added is the collection of all fill statements that have been used
to define elements of the indicated table, in addition to a definition of the table (if that had not
been done yet). In the second version only individual elements of the indicated table are added.
These elements are indicated as it should be in the left hand side of a fill statement.
One is allowed to specify more than one table, or more than one element. If one likes to specify
anything after an element, it should be realized that one needs to use a comma for a separator,
because blank spaces after a parenthesis are seen as irrelevant.
Examples:

TableBase "no11.tbl" open;

TableBase "no11.tbl" load;

TableBase "no11.tbl" addto no11filb;

TableBase "no11.tbl" addto no11fill(-3,1,1,1,1,2,1,1,0,0,0),

no11fill(-2,1,1,2,1,1,1,1,0,0,0);
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12.2 apply

Syntax:
Apply [number] [tablename(s)];

See also testuse (12.10) and use (12.11).
The actual application of fill statements that were taken from the tablebases. If no tables are
specified, this is done for all tables, otherwise only for the tables whose names are mentioned. The
elements must have been registered as used before with the application of a testuse statement, and
they must have been compiled from the tablebase with the use option of the tablebase statement.
The number refers to the maximum number of table elements that can be substituted in each
term. This way one can choose to replace only one element at a time. If no number is present all
occurrences will be replaced. This refers also to occurrences inside function arguments. If only a
limited number is specified in the apply statement, the occurrences inside function arguments have
priority.

12.3 audit

Syntax:
TableBase ”file.tbl” audit;

See also open (12.9)
Prints a list of all tables and table elements that are defined in the specified tablebase. This
tablebase needs to be opened first. As of the moment there are no options for the audit. Future
options might include formatting of the output.

12.4 create

Syntax:
TableBase ”file.tbl” create;

See also open (12.9)
This creates a new file with the indicated name. This file will be initialized as a tablebase. If there
was already a file with the given name, its old contents will be lost. If one would like to add to an
existing tablebase, one should use the ‘open’ option.

12.5 enter

Syntax:
TableBase ”file.tbl” enter;
TableBase ”file.tbl” enter tablename(s);

See also open (12.5) and load (12.6).
Scans the specified tablebase and (in the first variety) creates for all elements of all tables in
the tablebase a fill statement with its full contents. This is at times faster than reading the fill
statements from a regular input file, because the tablebase has its contents compressed. Hence this
costs less file access time. When table names are specified, only the tables that are mentioned have
their elements treated this way.
The tablebase must of course be open for its contents to be available.
If one would like FORM to only see what elements are available and load that information one
should use the load option.
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12.6 load

Syntax:
TableBase ”file.tbl” load;
TableBase ”file.tbl” load tablename(s);

See also open (12.9) and enter (12.5).
Scans the index of the specified tablebase and (in the first variety) creates for all elements of all
tables in the tablebase a fill statement of the type

Fill tablename(indices) = tbl_(tablename,indices,arguments);

This is the fill statement that will be used when elements of one of these tables are encountered.
The function tbl is called the (table)stub function. When table names are specified, only the tables
that are mentioned have their elements treated this way.
The tablebase must of course be open for its contents to be available.
If one would like to actually load the complete fill statements, one should use the enter option.

12.7 off

Syntax:
TableBase ”file.tbl” off subkey;

See also addto (12.1) and off (12.8).
Currently only the subkey ‘compress’ is recognized. It makes sure that no compression is used
when elements are being stored in a tablebase with the addto option. This could be interesting
when the right hand sides of the fill statements are relatively short.

12.8 on

Syntax:
TableBase ”file.tbl” on subkey;

See also addto (12.1) and off (12.7).
Currently only the subkey ‘compress’ is recognized. It makes sure that compression with the gzip
algorithms is used when elements are being stored in a tablebase with the addto option. This is
the default.

12.9 open

Syntax:
TableBase ”file.tbl” open;
TableBase ”file.tbl” open, readonly;

See also create (12.4)
This opens an existing file with the indicated name. It is assumed that the file has been created
with the ‘create’ option in a previous FORM program. It gives the user access to the contents of
the tablebase. In addition it allows the user to add to its contents. If the read-only option is set,
no contents can be added.
Just like with other files, FORM will look for the file in in current directory and in all other
directories mentioned in the environment variable ‘FORMPATH’ (see for instance the #call (3.10)
and the #include (3.36) instructions).
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12.10 testuse

Syntax:
TestUse;
TestUse tablename(s);

See also use (12.11).
Tests for all elements of the specified tables (if no tables are mentioned, this is done for all tables)
whether they are used in a stub function tbl . If so, this indicates that these elements must be
compiled from a tablebase, provided this has not been done already. The compilation will have to
be done at a time, specified by the user. This can be done with the use option. All this statement
does is set some flags in the internals of FORM for the table elements that are encountered in the
currently active expressions.

12.11 use

Syntax:
TableBase ”file.tbl” use;
TableBase ”file.tbl” use tablename(s);

See also testuse (12.10) and apply (12.2).
Causes those elements of the specified tables to be compiled, that a previous testuse statement has
encountered and that have not yet been compiled before. If no tables are mentioned this is done for
all tables. The right hand sides of the definition of the table elements will not yet be substituted.
That is done with an apply statement.
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Chapter 13

Dictionaries

At times one would like to manipulate the output to facilitate further processing. A standard
example is that the output formula should be included in a LATEX file. Also the use of terms in
the output as patterns with wildcards in the LHS of an id-statements needs textual translation.
Another example is the representation of fractions in a numerical program that works with floating
point numbers. Complete solutions for such problems are not included in FORM, but with the
partial solution of ‘dictionaries’ one can do quite a lot already.

In FORM a dictionary is a collection of ‘words’ together with their translation. The word can be
a number, a variable, a function with its arguments or a special output token like a multiplication
sign or a power indicator. The translation can be any string. Generic patterns have not been
implemented. That would be more like grammar and involves special complications. As shown
later, currently there is one exception to this rule.

A dictionary is defined with the preprocessor instruction

#opendictionary name

in which ‘name’ is the name of the dictionary. There can be more dictionaries, provided they have
different names. It is allowed to open already existing dictionaries. Only one dictionary can be
open at a given time. Dictionaries are closed with the instruction

#closedictionary

and because there can be only one open dictionary, it is clear which dictionary should be closed.
A dictionary is opened to add words to it. This is done with the #add instruction as in

#add x1: "x_1"

#add *: "\ "

#add mu: "\mu"

which would tell the system that when the dictionary is in use, the variable x1 should be printed as
the string x_1 and a multiplication sign should become a backslash character followed by a blank
space. The (index) mu would be printed as the string \mu.

A dictionary can be used with the

#usedictionary name <(options)>

instruction. At the moment a dictionary is being used there cannot be any open dictionaries. Hence
we can stop using a dictionary with the

#closedictionary
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instruction without running into inconsistencies. The options control partial use of a dictionary,
as for instance only for individual variables, or only for numbers. They can also control whether
translations should be made inside function arguments or inside dollar variables (when used as
preprocessor variables).

What words are allowed?

variable This can be the name of a symbol, a vector, an index or a function (this includes com-
muting functions, non-commuting functions, tensors and tables).

number This must be a positive integer number.

fraction This must be a positive rational number.

special character Currently this can be the multiplication sign (*), or the power sign (^ or **).

a range Indicated between parentheses, this is a range of extra symbols. There can be more than
one range.

a function with arguments This would be a complete function subterm.

The options in the #usedictionary should be enclosed between parentheses and separated by
comma’s. They can be:

allnumbers All numbers will be looked up in the dictionary.

integersonly Only integer numbers will be looked up.

nonumbers Numbers will not be looked up.

numbersonly Only numbers will be looked up.

novariables Loose variables will not be looked up.

variablesonly Only loose variables will be looked up.

nospecials Specials (multiplication signs and power signs) will not be looked up.

specialsonly Only specials (multiplication signs and power signs) will be looked up.

nofunwithargs Functions with arguments will not be looked up.

funwithargsonly Only functions with arguments will be looked up.

warnings Warnings concern the look up of numbers. If a fortran or C format is being used and the
dictionary cannot be used in such a way that floating point notation and/or decimal points
can be avoided, a warning will be given.

nowarnings No floating point warnings are given.

infunctions Substitutions are also made inside function arguments.

notinfunctions No substitutions are made inside function arguments.

$ Substitutions are made also when dollar variables are expanded. The default is that this is not
done.
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The defaults are that all potential objects are looked up (also inside function arguments) and no
warnings are given.

The use is best illustrated with a few examples.

Symbols x1,y2,z3,N;

Indices mu,nu,ro,si;

Tensor tens;

CFunction S,R,f;

ExtraSymbols array w;

#OpenDictionary test

#add x1: "x_1"

#add y2: "y^{(2)}"

#add z3: "{\cal Z}"

#add *: " "

#add S(R(1),N): "S_1(N)"

#add S(R(2),N): "S_2(N)"

#add S(R(1,1),N): "S_{1,1}(N)"

#add f: "\ln"

#add mu: "\mu"

#add nu: "\nu"

#add ro: "\rho"

#add si: "\sigma"

#add tens: "T"

#CloseDictionary

Local F = x1*y2*z3

+ S(R(1),N) + S(R(1,1),N) + S(R(2),N)

+ tens(mu,nu,ro,si) + f(x1+1);

#usedictionary test

Print +s;

.end

This program gives for its output

F =

+ x_1 y^2 {\cal Z}

+ T(\mu,\nu,\rho,\sigma)

+ S_1(N)

+ S_{1,1}(N)

+ S_2(N)

+ \ln(1 + x_1)

;

Of course, there is nothing here that could not have been done with a good text editor, but having
this inside the FORM program makes that if there are changes in the FORM program, it will be
less work to implement them in the eventual LATEX files.

Things become different when numerical output is involved. Take for instance the fraction 1/3
inside a FORTRAN program. Using the option

Format Fortran;

one would obtain
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1./3.

and with

Format DoubleFortran;

one would obtain

1.D0/3.D0

while using

Format QuadFortran;

one would obtain

1.Q0/3.Q0

which means that one might have three varieties of the same program, depending on the precision
in which one would like run it. It would be far better to have a single version and only determine
in the make file what the precision should be. The FORTRAN code for such a program could look
like

REAL one,three,third

PARAMETER (one=1,three=3,third=one/three)

after which one should either use the name ’third’ or a construction like ’one/three’. Let us take a
simple program like

Symbol x,n;

Format DoubleFortran;

Local F = (1+x)^7/7;

id x^n? = x*x^n/(n+1);

Print;

.end

F =

& 1.D0/7.D0*x + 1.D0/2.D0*x**2 + x**3 + 5.D0/4.D0*x**4 + x**5 + 1.D

& 0/2.D0*x**6 + 1.D0/7.D0*x**7 + 1.D0/56.D0*x**8

If we define a dictionary we can make this into

Symbol x,n;

Format DoubleFortran;

#OpenDictionary numbers

#add 2: "TWO"

#add 5: "FIVE"

#add 7: "SEVEN"

#CloseDictionary

Local F = (1+x)^7/7;

id x^n? = x*x^n/(n+1);

#UseDictionary numbers

Print;

.end

F =

& 1/SEVEN*x + 1/TWO*x**2 + x**3 + FIVE/4*x**4 + x**5 + 1/TWO*x**6

& + 1/SEVEN*x**7 + 1.D0/56.D0*x**8
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one can see that some of the numbers have been replaced by text strings. In particular these are
the numbers 2, 5 and 7. The output is now presented in such a way that the compiler can do the
rest, provided we do this with all numbers that occur, and we feed the proper information to the
compiler.

One can also replace complete fractions as in

Symbol x,n;

Format DoubleFortran;

#OpenDictionary numbers

#add 2: "TWO"

#add 5: "FIVE"

#add 7: "SEVEN"

#add 1/2: "HALF"

#CloseDictionary

Local F = (1+x)^7/7;

id x^n? = x*x^n/(n+1);

#UseDictionary numbers

Print;

.end

F =

& 1/SEVEN*x + HALF*x**2 + x**3 + FIVE/4*x**4 + x**5 + HALF*x**6 +

& 1/SEVEN*x**7 + 1.D0/56.D0*x**8

because the fractions take precedence.
The next question is how one makes sure to have all numbers that need replacement? For that

one can use the warnings option:

Symbol x,n;

Format DoubleFortran;

#OpenDictionary numbers

#add 2: "TWO"

#add 5: "FIVE"

#add 7: "SEVEN"

#add 1/2: "HALF"

#CloseDictionary

Local F = (1+x)^7/7;

id x^n? = x*x^n/(n+1);

#UseDictionary numbers (warnings)

Print;

.end

Time = 0.00 sec Generated terms = 8

F Terms in output = 8

Bytes used = 204

F =

& 1/SEVEN*x + HALF*x**2 + x**3 + FIVE/4*x**4 + x**5 + HALF*x**6 +

>>>>>>>>Could not translate coefficient with dictionary numbers<<<<<<<<<

<<<

& 1/SEVEN*x**7 + 1.D0/56.D0*x**8
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In this case the line after the warning contains a fraction that was not substituted. This allows one
to add either 56 or 1/56 to the dictionary. This gives the program

Symbol x,n;

Format DoubleFortran;

#OpenDictionary numbers

#add 2: "cd2"

#add 5: "cd5"

#add 7: "cd7"

#add 56: "cd56"

#add 1/2: "c1d2"

#add 5/4: "c5d4"

#CloseDictionary

Local F = (1+x)^7/7;

id x^n? = x*x^n/(n+1);

#UseDictionary numbers (warnings)

Print;

.end

F =

& 1/cd7*x + c1d2*x**2 + x**3 + c5d4*x**4 + x**5 + c1d2*x**6 + 1/

& cd7*x**7 + 1/cd56*x**8

Here we have selected a different notation that allows extension easily. A good way to do this now
is to put the dictionary in a file numbers.hh and the corresponding FORTRAN definitions in a file
numbers.h and then include these files in the proper places. The numbers.hh file would be

#OpenDictionary numbers

#add 2: "cd2"

#add 5: "cd5"

#add 7: "cd7"

#add 56: "cd56"

#add 1/2: "c1d2"

#add 5/4: "c5d4"

#CloseDictionary

and the numbers.h file would be

REAL cd2,cd5,cd7,cd56,c1d2,c5d4

PARAMETER (cd2=2,cd5=5,cd7=7,cd56=56,c1d2=1/cd2,c5d4=cd5/4)

and when the dictionary file is updated one may update the FORTRAN file simultaneously.
Setting the precision of the declaration REAL can be done by compiler options. These may

depend on the compiler. One should consult the manpages.
Printing the extra symbols (7.55) may be a bit trickier. A range is indicated with a pair of

parentheses enclosing one or two (positive) numbers. If there are two numbers, they should be
separated by a comma. There can be more than one range. In the substitution one can use the
wildcards %# and %@ to indicate the number of the extra symbol. The first wildcard indicates the
number of the symbol and the second starts it counting with 1 from the beginning of the range.

Symbol x;

CFunction f;
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#OpenDictionary ranges

#add (1,2): "w(%#)"

#add (3): "ww(%#)"

#add (4,6): "www(%@)"

#CloseDictionary

Local F = <f(1)*x^1>+...+<f(6)*x^6>;

ToPolynomial;

Print;

.sort

F =

x*Z1_ + x^2*Z2_ + x^3*Z3_ + x^4*Z4_ + x^5*Z5_ + x^6*Z6_;

#UseDictionary ranges

Print;

.end

F =

x*w(1) + x^2*w(2) + x^3*ww(3) + x^4*www(1) + x^5*www(2) + x^6*www(3);

The use of the dictionaries in dollar variables can best be shown with an example that has much
in common with graph theory. Assume we have an expression that contains all topologies we are
interested in, with a notation for the momenta. The function vx represents a vertex and we use it
as a symmetric function. Here we show two topologies from massless two-loop propagators:

+vx(p0,p1,-p4)*vx(-p1,p2,p5)*vx(q0,-p2,-p3)*vx(p4,p3,-p5)*topo(1)

+vx(p0,p1,p2)*vx(-p1,p3,p4)*vx(q0,-p2,-p3,-p4)*topo(2)

where the q0 momentum is taken to be -p0. The problem is what happens when in a diagram of
topology one, one of the lines is removed. If for instance the p1 line is removed, we will end up
with the second topology, but the question is: how should we relabel the momenta to obtain the
notation of topology 2. Taking out p1 gives us:

+vx(p0,-p4,p2,p5)*vx(q0,-p2,-p3)*vx(p4,p3,-p5)*topo(1)

and to see what renaming we need is usually a major source of errors. We can do this automatically
if we can substitute the second topology into the remainder of the first using proper wildcards and
storing the matches in dollar variables. This can be done with a dictionary:

#OpenDictionary match

#add p0: "p0?{p0,q0}$p0"

#add q0: "q0?{p0,q0}$q0"

#do i = 1,5

#add p‘i’: "p‘i’?$p‘i’"

#enddo

#CloseDictionary

We put the various candidate topologies that could match, one by one, into the variable $child as
in (after using brackets on the expression with the topologies):

#$child = Topologies[topo(2)];
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but generating an id-statement from it would be very laborious without the dictionaries:

id ‘$Orig’ = 1;

would result in:

id vx(-p2,-p3,q0)*vx(-p4,p0,p2,p5)*vx(-p5,p3,p4) = 1;

but with the dictionary activated as in

#inside $child

#UseDictionary match($)

id ‘$Orig’ = 1;

#CloseDictionary

#endinside

the generated code is

id vx(-p2?$p2,-p3?$p3,q0?{p0,q0}$q0)*vx(-p4?$p4,p0?{p0,q0}$p0,

p2?$p2,p5?$p5)*vx(-p5?$p5,p3?$p3,p4?$p4) = 1;

and from the dollar variables we can generate a statement with the the renumbering

id topo(1) = topo(2)*replace_(p0,-p0,p1,q1,p2,-p2,p3,-p1,p4,p3,p5,-p4);

We used p1 → q1 as initialization before the pattern matching and p0 = q0 we can replace by
p0 = p0. The q1 should be replaced by means of momentum conservation, but that goes beyond
the scope of this example.

It should be clear from the above that the dictionaries are the beginning of a new development.
One should expect more capabilities in the future and suggestions are highly appreciated, provided
they lead to something that can be implemented in a reasonable amount of time. Hence, for
instance, there will not be a complete LATEX output format that can take line length into account.
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Chapter 14

Dirac algebra

For its use in high energy physics FORM is equipped with a built-in class of functions. These are
the gamma matrices of the Dirac algebra which are generically denoted by g . The gamma matrices
fulfill the relations:

{g_(j1,mu),g_(j1,nu)} = 2 * d_(mu,nu)

[g_(j1,mu),g_(j2,nu)] = 0 j1 not equal to j2.

The first argument is a so-called spin line index. When gamma matrices have the same spin line,
they belong to the same Dirac algebra and commute with the matrices of other Dirac algebra’s.
The indices mu and nu are over space-time and are therefore usually running from 1 to 4 (or from
0 to 3 in Bjorken & Drell metric). The totally antisymmetric product e (m1,m2,...,mn)g (j,m1)×
...g (j, mn)/n! is defined to be gamma5 or g5 (j). The notation 5 finds its roots in 4 dimensional
space-time. The unit matrix is denoted by gi (j). In four dimensions a basis of the Dirac algebra
can be given by:

gi_(j)

g_(j,mu)

[g_(j,mu),g_(j,nu)]/2

g5_(j)*g_(j,mu)

g5_(j)

In a different number of dimensions this basis is correspondingly different. We introduce the
following notation for convenience:

g6_(j) = gi(j) + g5_(j) (from Schoonschip)

g7_(j) = gi(j) - g5_(j)

g_(j,mu,nu) = g_(j,mu)*g_(j,nu) (from Reduce)

g_(j,mu,nu,.....,ro,si) =

g_(j,mu,nu,.....,ro)*g_(j,si)

g_(j,5_) = g5_(j)

g_(j,6_) = g6_(j)

g_(j,7_) = g7_(j)

The common operation on gamma matrices is to obtain the trace of a string of gamma matrices.
This is done with the statement:
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trace4, j Take the trace in 4 dimensions of the combination of all gamma matrices
with spin line j in the current term. Any non-commuting objects that
may be between some of these matrices are ignored. It is the users re-
sponsibility to issue this statement only after all functions of the relevant
matrices are resolved. The four refers to special tricks that can be ap-
plied in four dimensions. This allows for relatively compact expressions.
For the complete syntax, consult 7.158.

tracen, j Take the trace in an unspecified number of dimensions. This number of
dimensions is considered to be even. The traces are evaluated by only
using the anticommutation properties of the matrices. As the number of
dimensions is not specified the occurrence of a g5 (j) is a fatal error. In
general the expressions that are generated this way are longer than the
four dimensional expressions. For the complete syntax, consult 7.159.

It is possible to alter the value of the trace of the unit matrix gi (j). Its default value is 4, but
by using the statement (see 7.164)

unittrace value;

it can be altered. Value may be any positive short number (< 215 on 32 bit machines and < 231

on 64 bit machines) or a single symbol with the exception of the symbol i .
There are several options for the 4-dimensional traces. These options find their origin in the

Chisholm relation that is valid in 4 dimensions but not in a general number of dimensions. This
relation can be found in the literature. It is given by:

γµTr[γµS] = 2(S + SR) (14.1)

in which S is a string of gamma matrices with an odd number of matrices (γ5 counts for an even
number of matrices). SR is the reversed string. This relation can be used to combine traces with
common indices. The use of this relation is the default for trace4. If it needs to be switched off,
one should add the extra option ‘nocontract’:

trace4,nocontract,j;

The option ‘contract’ is the default but it can be used to enhance the readability of the program.
The second option that refers to this relation is the option ‘symmetrize’. Often it happens that
there are two or more common indices in two spin lines. Without the symmetrize option (or with
the ‘nosymmetrize’ option) the first of these indices is taken and the relation is applied to it. With
the ‘symmetrize’ option the average over all possibilities is taken. This means of course that if
there are two common indices the amount of work is doubled. There is however a potentially large
advantage. In some traces that involve the use of γ5 the use of automatic algorithms results often
in an avalanche of terms with a single Levi-Civita tensor, while symmetry arguments can show
that these terms should add up to zero. By working out the traces in a more symmetric fashion
FORM is often capable of eliminating all or nearly all of these Levi-Civita tensors. Normally
such an elimination is rather complicated. It involves relations that have so far defied proper
implementation, even though people have been looking for such algorithms already for a long time.
Hence the use of the symmetry from the beginning seems at the moment the best bet.

It is possible to only apply the Chisholm identity without taking the trace. This is done with
the chisholm statement (see 7.17).

The n dimensional traces can use a special feature, when the declaration of the indices involved
will allow it. When an index has been declared as n-dimensional and the dimension is followed by
a second symbol as in
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symbols n,nn;

index mu=n:nn;

and if the index mu is a contracted index in a single n-dimensional trace, then the formula for this
trace can be shortened by using nn (one term) instead of the quantity (n − 4) (two terms). This
can make the taking of the n-dimensional traces significantly faster.

Algorithms:
FORM has been equipped with several built in rules to keep the number of generated terms to

a minimum during the evaluation of a trace. These rules are:

rule 0 Strings with an odd number of matrices (gamma5 counts for an even number of matrices)
have a trace that is zero, when using trace4 or tracen.

rule 1 A string of gamma matrices is first scanned for adjacent matrices that have the same
contractable index, or that are contracted with the same vector. If such a pair is found, the
relations

g_(1,mu,mu) = gi_(1)*d_(mu,mu)

g_(1,p1,p1) = gi_(1)*p1.p1

are applied.

rule 2 Next there is a scan for a pair of the same contractable indices that has an odd number of
other matrices in between. This is done only for 4 dimensions (trace4) and the dimension of
the indices must be 4. If found, the Chisholm identity is applied:

g_(1,mu,m1,m2,...mn,mu) = -2*g_(1,mn,...,m2,m1)

rule 3 Then (again only for trace4) there is a search for a pair of matrices with the same 4
dimensional index and an even number of matrices in between. If found, one of the following
variations of the Chisholm identity is applied:

g_(1,mu,m1,m2,mu) = 4*gi_(1)*d_(m1,m2)

g_(1,mu,m1,m2,...,mj,mn,mu) =

2*g_(1,mn,m1,m2,...,mj)

+2*g_(1,mj,...,m2,m1,mn)

rule 4 Then there is a scan for pairs of matrices that have the same index or that are contracted
with the same vector. If found, the identity:

g_(1,mu,m1,m2,...,mj,mn,mu) =

2*d_(mu,mn)*g_(1,mu,m1,m2,...,mj)

-2*d_(mu,mj)*g_(1,mu,m1,m2,...,mn)

....

-/+2*d_(mu,m2)*g_(1,mu,m1,...,mj,mn)

+/-2*d_(mu,m1)*g_(1,mu,m2,...,mj,mn)

-/+ d_(mu,mu)*g_(1,m1,m2,...,mj,mn)

216



is used to ’anticommute’ these identical objects till they become adjacent and can be elim-
inated with the application of rule 1. In the case of an n-dimensional trace and when mu

is an index (it might also be a vector in the above formula) for which the definition of the
dimension involved two symbols, there is a shorter formula. In that case the last three terms
can be combined into two terms:

-/+(n-4)*g_(1,m1,m2,...,mj,mn)

-/+4*d_(m1,m2)*g_(1,m3,m4,...,mj,mn)

It should be clear now that this formula is only superior, when there is a single symbol to
represent (n − 4). After this all gamma matrices that are left have a different index or are
contracted with different vectors. These are treated using:

rule5 Traces in 4 dimensions for which all gamma matrices have a different index, or are contracted
with a different four-vector are evaluated using the reduction formula

g_(1,mu,nu,ro) =

g_(1,5_,si)*e_(mu,nu,ro,si)

+d_(mu,nu)*g_(1,ro)

-d_(mu,ro)*g_(1,nu)

+d_(nu,ro)*g_(1,mu)

For tracen the generating algorithm is based on the generation of all possible pairs of in-
dices/vectors that occur in the gamma matrices in combination with their proper sign. When
the dimension is not specified, there is no shorter expression.

Remarks:
When an index is declared to have dimension n and the command trace4 is used, the special 4

dimensional rules 2 and 3 are not applied to this index. The application of rule 1 or 4 will then give
the correct results. The result will nevertheless be wrong due to rule 5, when there are at least 10
gamma matrices left after the application of the first 4 rules, as the two algorithms in rule 5 give a
difference only, when there are at least 10 gamma matrices. For counting gamma matrices the γ5
counts for 4 matrices with respect to this rule. The result is unpredictable, when both indices in
four dimensions and indices in n dimensions occur in the same string of gamma matrices. Therefore
one should be very careful, when using the four dimensional trace under the condition that the
results need to be correct in n dimensions. This is sometimes needed, when a γ5 is involved. The
tracen-statement will not allow the presence of a γ5. In general it is best to emulate n-dimensional
traces with a γ5 separately. The eventual trace, with all matrices with a different index, can be
generated with the use of the ’distrib ’ function:

*

* Symmetric trace of a gamma5 and 12 regular matrices

*

I m1,...,m12;

F G5,g1,g2;

L F = G5(m1,...,m12);

id G5(?a) = distrib_(-1,4,g1,g2,?a);

id g1(?a) = e_(?a);

id g2(?a) = g_(1,?a);
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tracen,1;

.end

Time = 1.07 sec Generated terms = 51975

F Terms in output = 51975

Bytes used = 919164

This rather symmetric result is in contrast to the 4-dimensional result which is much shorter, but
it is very unsymmetric:

*

* Regular trace of a gamma5 and 12 regular matrices

*

I m1,...,m12;

L F = g_(1,5_,m1,...,m12);

trace4,1;

.end

Time = 0.02 sec Generated terms = 1053

F Terms in output = 1029

Bytes used = 20284

The precise workings of the distrib function is given in 8.12.
One should be careful when using projection operators of spinors. The sloppy way is to write

(g_(1,p)+m)

but technically this is not correct. The correct way is

(g_(1,p)+m*gi_(1))

to avoid the possibility that in the end a trace will be taken over a term that does not have any
gamma matrix. If the projection operator is however multiplied by other gamma matrices, it makes
no difference whether the unit matrix is present. That is why the sloppy notation will almost always
give the correct result. Almost always....

218



Chapter 15

A few notes on the use of a metric

When FORM was designed, it was decided to make its syntax more or less independent of a choice
of the metric. Hence statements and facilities that programs like Schoonschip or REDUCE provide
but which depend on the choice of a metric have been left out. Instead there are facilities to
implement any choice of the metric, when the need really arises. When one makes a proper study
of it, it turns out that one usually has to do very little or nothing.

First one should realize that FORM does not know any specific metric by itself. Dotproducts are
just objects of manipulation. It is assumed that when a common index of two vectors is contracted,
this works out properly into a scalar object. This means that if one has a metric with upper and
lower indices, one index is supposed to be an upper index and the other is supposed to be a lower
index. If the user does not like this, it is his/her responsibility to force the system into a different
action. This is reflected in the fact that FORM does not have an internal metric tensor ηµν . It
has only a Kronecker delta δµν = d_(mu,nu) with p(mu)*d_(mu,nu)*q(nu) → p.q when mu and
nu are summable indices.

The dependency of a metric usually enters with statements like p2 = ±m2, which the user should
provide anyway, because FORM does not have such knowledge. Connected to this is the choice of
a propagator as either γµpµ + m or γµpµ + i m. This is also something the user should provide.
The only objects that FORM recognizes and that could be considered as metric-dependent are the
gamma matrices and the Levi-Civita tensor e_. Because the trace of a γ5 involves a Levi-Civita
tensor, the two are intimately connected. The anticommutator of two gamma matrices is defined
with the Kronecker delta. Amazingly enough that works out well, provided that, if such Kronecker
delta’s survive in the output, they are interpreted as a metric tensor. This should be done with
great care, because at such a point one does something that depends of the metric; one may have
to select whether the indices are upper or lower indices. One should check carefully that the way
the output is interpreted leads indeed to the results that are expected. This is anyway coupled
to how one should interpret the input, because in such a case one would also have an input with
‘open’ indices and give them a proper interpretation. The rule is that generally one does not have
to do anything. The upper indices in the input will be upper indices in the output and the same
for lower indices.

The contraction of two Levi-Civita tensors will give products of Kronecker delta’s. This means that
formally there could be an error of the sign of the determinant of the metric tensor, if one would
like the Kronecker delta to play the role of a metric tensor. Hence it is best to try to avoid such a
situation.

In FORM the γ5 is an object that anticommutes with the γµ and has γ5γ5 = 1. Its properties in
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the trace are

Tr[γ5γm1γm2γm3γm4 ] = 4ϵµ1µ2µ3µ4

This has a number of interesting consequences. The V-A and V+A currents are represented by
γ7γµ = (1− γ5)γµ and γ6γµ = (1+ γ5)γµ respectively. Under conjugation we have to replace γ5 by
−γ5 as is not uncommon.

There was a time that a conjugation operation was planned in FORM. As time progressed, it was
realized that this would introduce problems with some of the internal objects. Hence some objects
have the property that they are considered imaginary. In practise FORM does not do anything
with this. Neither does it do anything with the declarations real, complex and imaginary. If ever
a way is found to implement a conjugation operator that will make everybody happy, it may still
be built in.

The above should give the user enough information to convert any specific metric to what is needed
to make FORM do what is expected from it. Afterwards one can convert back, provided no metric
specific operations are done. Such metric specific things are for instance needed in some types of
approximations in which one substitutes objects by (vector)components halfway the calculation. In
that case one cannot rely on that the conversions at the beginning and the end will be compensating
each other. For this case FORM allows the user to define a private metric. All the tools exist
to make this a success with the exception of a loss in speed of course. Let us have a look at the
contraction of two Levi-Civita tensors in an arbitrary metric:

Indices m1,m2,m3,n1,n2,n3,i1,i2,i3;

Cfunction eta(symmetric),e(antisymmetric);

Off Statistics;

*

* We have our own Levi-Civita tensor e

*

Local F = e(m1,m2,m3)*e(m1,m2,m3);

*

* We write the contraction as

*

id e(m1?,m2?,m3?)*e(n1?,n2?,n3?) =

e_(m1,m2,m3)*e_(i1,i2,i3)*

eta(n1,i1)*eta(n2,i2)*eta(n3,i3);

*

* Now we can use the internal workings of the contract:

*

Contract;

Print +s;

.sort

F =

+ eta(i1,i1)*eta(i2,i2)*eta(i3,i3)

- eta(i1,i1)*eta(i2,i3)^2

- eta(i1,i2)^2*eta(i3,i3)

+ 2*eta(i1,i2)*eta(i1,i3)*eta(i2,i3)

- eta(i1,i3)^2*eta(i2,i2)
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;

*

* For specifying a metric we need individual components:

*

Sum i1,1,2,3;

Sum i2,1,2,3;

Sum i3,1,2,3;

Print +s;

.sort

F =

+ 6*eta(1,1)*eta(2,2)*eta(3,3)

- 6*eta(1,1)*eta(2,3)^2

- 6*eta(1,2)^2*eta(3,3)

+ 12*eta(1,2)*eta(1,3)*eta(2,3)

- 6*eta(1,3)^2*eta(2,2)

;

*

* And now we can provide the metric tensor

*

id eta(1,1) = 1;

id eta(2,2) = 1;

id eta(3,3) = -1;

id eta(1,2) = 0;

id eta(1,3) = 0;

id eta(2,3) = 0;

Print +s;

.end

F =

- 6

;

This is the ultimate in flexibility of course. It can also be worked out in a different way. In this
case we try to change the behaviour of the Kronecker delta a bit. This is dangerous and needs,
in addition to a good understanding of what is happening, good testing to make sure that what
the user wants is indeed what does happen. Here we use the FixIndex (7.61) statement. This one
assigns specific values to selected diagonal elements of the Kronecker delta. Of course it is the
responsibility of the user to make sure that the calculation will indeed run into those elements.
This is by no means automatic, because when FORM uses formal indices it never writes them out
in components. Moreover, it would not be defined what would be the components connected to an
index. The index could run over 0, 1, 2, 3 or over 1, 2, 3, 4, or maybe even over 5, 7, 9, 11. And what
does an n-dimensional index run over? In the above example it is the sum (7.142) statement that
determines this. Hence this is fully under the control of the user. Therefore a proper way to deal
with the above example would be

Indices i1,i2,i3;

221



FixIndex 1:1,2:1,3:-1;

Off Statistics;

*

Local F = e_(i1,i2,i3)*e_(i1,i2,i3);

Sum i1,1,2,3;

Sum i2,1,2,3;

Sum i3,1,2,3;

Print +s;

.sort

F =

+ 6*e_(1,2,3)*e_(1,2,3)

;

Contract;

Print +s;

.end

F =

- 6

;

In the case that one would like to exchange the order of the summation and the contraction, while
using the FixIndex mechanism, one needs to be more careful. In that case we have to prevent the
indices from being summed over while they are indices of a Kronecker delta, because as long as the
indices are symbolic, FORM will replace d_(i1,i1) by the dimension of i1, and that is not what
we want. Hence we have to declare the indices to be non-summable by giving them dimension zero:

Indices i1=0,i2=0,i3=0;

FixIndex 1:1,2:1,3:-1;

Off Statistics;

*

Local F = e_(i1,i2,i3)*e_(i1,i2,i3);

Contract;

Print +s;

.sort

F =

+ d_(i1,i1)*d_(i2,i2)*d_(i3,i3)

- d_(i1,i1)*d_(i2,i3)*d_(i2,i3)

- d_(i1,i2)*d_(i1,i2)*d_(i3,i3)

+ 2*d_(i1,i2)*d_(i1,i3)*d_(i2,i3)

- d_(i1,i3)*d_(i1,i3)*d_(i2,i2)

;

Sum i1,1,2,3;

Sum i2,1,2,3;

Sum i3,1,2,3;

Print +s;
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.end

F =

- 6

;

As we can see, the automatic summation over the indices is not performed now and this gives us
a chance to do the summation manually. After that the fixindex statement can have its effect.

It should be clear from the above examples that it is usually much easier to manipulate the input in
such a way that the terms with two Levi-Civita tensors have the negative sign from the beginning.
This would give programs that are less complicated and much faster.

Hence we are faced with the situation that in normal cases one does not do anything. If one
wants to go beyond this and wants to interfere with the inner workings themselves by for instance
inserting a factor i in front of the γ5 and emulating the upper and lower indices of a favorite metric,
this leads from one problem to the next. Extreme care is needed. This is usually done by people
who have first worked with other programs in which things don’t work as naturally as in FORM.
By the time one has really figured out how to deal with the metric and how to make use of the
internal algorithms of FORM, one usually does not have to do very much again.

As in the Zen saying:

To the beginning student mountains are mountains and water is water. To the advanced student
mountains stop being mountains and water stops being water. To the master mountains are
mountains again and water is water again.

Of course the modern master also checks that what he expects the system to do, is indeed what
the system does.
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Chapter 16

Sorting and statistics

The sorting system is a vital part of FORM and one of the main reasons why the speed of FORM
compares so favorably with other systems. A good understanding of what happens during the
sorting of expressions is essential if one wants to write efficient programs. In essence the sorting is
done by a tree sort. However due to the nature of mathematical expressions there is a complication.
When two terms are identical with the possible exception of their coefficient, we will add their
coefficients, put this new coefficient in the place of the coefficient of the first term, and drop the
second term. If the new coefficient happens to be zero, both terms are dropped. Hence the number
of terms during the sort is not fixed. For a tree sort this is not a major complication. What is more
annoying though is that the new coefficient may take more space inside the storage than either of
the old coefficients. Let us have a look now at what happens in a FORM program. Much can be
seen from the statistics.

S x1,...,x4;

L F = (x1+...+x4)^4;

.end

Time = 0.01 sec Generated terms = 35

F Terms in output = 35

Bytes used = 628

In this case the program generated 35 terms. Whenever a term is generated and FORM is done
with it (no more statements will act on it), FORM will write it into a buffer which is called the
small buffer. Additionally it stores a pointer to the location of this term inside the small buffer.
Next it will continue generating terms. This process will be stopped by either of three conditions:

1. FORM is finished generating terms.

2. The last generated term does not fit inside the space remaining in the small buffer.

3. There is no space for a pointer to the last generated term inside the array of pointers.

In either of these three cases FORM will sort the contents of the small buffer. This sorting is
done ‘by pointers’ and hence it is important that the whole small buffer fits inside the physical
memory of the computer. If this would not be the case, some very inefficient swapping of memory
might be the result. During this sorting FORM may run into the problem that the coefficient of
two combined terms does not fit in the place of one of the two old coefficients. This means that
the combined term will need more space, but because the old terms might be enclosed by other
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terms, this space may not be available locally. To this end FORM has some spare space in the
small buffer which is called the small extension. Actually the term SmallExtension is used for the
combination of the small buffer and its extra space. The extra space is at least 1/6 times the size of
the small buffer, but typically it will be about 1/3 the size of the small buffer. In some exceptional
cases (with heavy use of a polynomial coefficient via the PolyFun command) bigger sizes might be
useful.

In the case that the new combined term needs more space than each of the old terms, the new
term is placed in the extension space. If, during the sort, the extension space becomes exhausted,
FORM will make a garbage collection of the entire extended small buffer. This will always result
in the extension space becoming empty again, because the notation of the terms in FORM is such
the new combined term will at most occupy an amount of space equal to the sum of the spaces of
the original two terms. In older versions of FORM this garbage collection was executed by means
of a temporary disk file. In the new version it is done inside the memory by temporarily allocating
a new buffer. Anyway such garbage collections are relatively rare.

In the above example, the sorting occurred because the generation of terms was finished. Hence
the sorted output is written away in such a way that it can be used as input for a potential next
module (or to be printed). Hence let us change the size of the small buffer:

#: SmallSize 300

S x1,...,x4;

L F = (x1+...+x4)^4;

.end

Time = 0.00 sec Generated terms = 13

F 1 Terms left = 13

Bytes used = 236

Time = 0.00 sec Generated terms = 26

F 1 Terms left = 26

Bytes used = 476

Time = 0.00 sec Generated terms = 35

F 1 Terms left = 35

Bytes used = 632

Time = 0.00 sec Generated terms = 35

F Terms in output = 35

Bytes used = 628

Now the size of the small buffer will be only 300 bytes. As a result the 13-th term does not fit. We
can see this in the statistics: the 13-th term has been generated and FORM sorts the small buffer.
The output of the 12 sorted terms is written to another buffer, called the large buffer. Inside the
large buffer the terms are lightly compressed. This compression is related to the fact that in each
‘patch’ the terms are already sorted and hence we may not have to repeat the identical beginnings
of each term. Hence the amount of space used after this sort is less than the 300 bytes of the
small buffer, even though the 13-th term gave an overflow for these 300 bytes. The small buffer
fills up again at the 26-th term and again it is sorted and the results written to the large buffer.
Finally, after 35 terms, the generation is finished. Hence the remains in the small buffer are also
sorted and written as a third ‘patch’ into the large buffer. Then the large buffer is sorted. For
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this a different sort technique is used. It is assumed that the large buffer is not always residing
inside the physical memory. Hence parts of it may be swapped out temporarily. With the size of
current days memories this may not happen very often, unless one sets the size of the buffer to
something comparable to the memory size of the computer and several programs are running at
the same time. Anyway, swapping will not affect the large buffer very much. FORM will merge
the ‘patches’ by going sequentially through them with a method called ‘tree of losers’ in the book
by Knuth (the art of computer programming, vol. 3). Because it goes sequentially through the
patches, uses all the information it reads and never needs it again, this method is indeed rather
well resistant to swapping.

The next complication is of course when the large buffer is full. This can be either because its
byte space is full, or because the maximum number of patches is exceeded. Because the sorting
method uses quite a few variables for each patch, there is a space allocated for them and hence
there is a maximum number of patches. If we set this to 2 (just for demonstration purposes) we
obtain:

#: SmallSize 200

#: LargePatches 2

S x1,...,x4;

L F = (x1+...+x4)^4;

.end

Time = 0.00 sec Generated terms = 9

F 1 Terms left = 9

Bytes used = 164

Time = 0.00 sec Generated terms = 17

F 1 Terms left = 17

Bytes used = 312

Time = 0.00 sec Generated terms = 26

F 1 Terms left = 26

Bytes used = 478

Time = 0.00 sec

F Terms active = 26

Bytes used = 474

Time = 0.00 sec Generated terms = 35

F 1 Terms left = 35

Bytes used = 630

Time = 0.00 sec

F Terms active = 35

Bytes used = 786

Time = 0.00 sec Generated terms = 35

F Terms in output = 35

Bytes used = 628
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We see that after the third small buffer has been sorted, the third patch cannot be written to the
large buffer. Hence the large buffer is sorted (indicated by the special statistics involving the phrase
‘Terms active’). The result of this is written as a sorted patch to the sort file. This file is one of
the temporary files that FORM can create. It has the extension .sor. Now the third patch can be
written into the –by now empty– large buffer. At the end of term generation, the last small buffer
is sorted, its results written into the large buffer, then that is sorted and its results written as the
final patch into the sort file. Then, finally the patches in the sort file are merged in a method
similar to the way the large buffer is sorted. This final sort is a disk to disk sort. Hence it can use
the disk rather intensely and the use of the CPU may drop temporarily, although it is nothing so
dramatic as when the computer is involved in heavy inefficient swapping as can be the case with
many other algebra programs. Also, this is usually only a small fraction of the running time of the
program. The exception may be when FORM is running several processes and they are all using
disk sorts simultaneously. In that case some file systems may not be very good at handling the
ensuing traffic jams.

Also the disk to disk sort will have a maximum number of patches that can be sorted simul-
taneously. If this number is exceeded there will be one or more extra stages in the sorting, all of
which will be disk to disk sorts. It is advisable to tune the setup parameters in such a way that one
can prevent this, because it involves usually needless use of resources. One can try to increase the
parameter FilePatches, but the problem is that FORM uses a caching system to buffer the inputs
from the sort file. The cache buffers have to have a size that is at least twice the maximum size of
a term. For each patch it needs a buffer and all buffers together should fit inside the combination
of the large buffer and the small extended buffer. This puts an upper limit on the number of file
patches. Additionally this buffer (SortIOsize) should not be very small, because otherwise the disk
IO operations are very inefficient. Hence it helps often to increase the size of the small buffer and
the large buffer first. That gives fewer patches. Additionally it in turn can allow for more file
patches that are not too small.

One thing that one can see now is that if terms are to cancel or to add, it is advantageous if
this happens already in an early stage of the sorting. This means that it is most efficient if these
terms will end up in the small buffer at the same time. This should explain the example given in
the section on brackets. This way fewer terms are written to the large buffer and/or the sort file,
which means that less disk space will be used.

The sizes of buffers involved can all be tuned to a given hardware. How this is done is explained
in the chapter on the setup 17.

When FORM is dealing with the arguments of functions and if an argument is a multiterm
subexpression, also such subexpressions need to be sorted. In older versions of FORM this was done
inside the at that moment remaining space of the small buffer and its extension. The reason was
that such subexpressions would be rather short (they would have to fit inside a function argument
and were hence limited by the maximum size of a term) and buffer space was hard to come by
in computers with small memories. In the new version of FORM other subexpression sorts were
added: the sorting in the term environment (see 7.149) and the sorting of $-expressions. Both
sorts do not have the restriction of the maximum size of a term. They can result in expressions
that are arbitrarily long (although that might not give efficient programs). Hence the sorting of
subexpressions have now their own buffers. And more than one such set may be needed if for
instance the term environment is used in a nested fashion. Of course the settings for the buffers
of this ‘subsort’ are not quite as large as for the main buffers. And the user can of course also
influence their settings as explained in the chapter on the setup 17. This chapter gives also all
default values.

There is one restriction on the sorting of function arguments and $-expressions: They are not
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allowed to go into the stage4 sorting. Any such attempt will result in an error message and the
suggestion to raise the size of the buffers for this type of sorting.

When FORM is running in parallel mode (either TFORM or ParFORM) each worker will
need its own buffers. In ParFORM in which the processors each control their own memory, the
size of each of these buffers are the same as for the master process. In TFORM with its shared
memory the sizes that the user selects for the sort buffers and the scratch file caches refer to the
buffers of the master thread. The workers each get basically buffers with 1/N times the size of the
buffer of the master. They may be made a bit bigger when potential conflicts with MaxTermSize
occur.
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Chapter 17

The setup

When FORM is started, it has a number of settings built in that were determined during its
installation. If the user would like to alter these settings, it is possible to either specify their
desired values in a setup file or to do so at the beginning of the program file. There are two
ways in which FORM can find a setup file. The first way is by having a file named ‘form.set’ in
the current directory. If such a file is present, FORM will open it and interpret its contents as
setup parameters. If this file is not present, one may specify a setup file with the -s option in the
command tail. This option must precede the name of the input file. After the -s follow one or more
blanks or tabs and then the full name of the setup file. FORM will try to read startup parameters
from this file. If a file ‘form.set’ is present, FORM will ignore the -s option and its corresponding
file name. This order of interpretation allows the user to define an alias with a standard setup file
which can be overruled by a local setup file. If, in the beginning of the program file, before any
other statements with the exception of the #- instruction and commentary statements, there are
lines that start with #: the remaining contents of these lines are interpreted exactly like the lines
in the setup file. The specifications in the program file take precedence over all other specifications.
If neither of the above methods is used, FORM will use a built in set of parameters. Their values
may depend on the installation and are given below.

The following is a list of parameters that can be set. The syntax is rather simple: The full
word must be specified (case insensitive), followed by one or more blanks or tabs and the desired
number, string or character. Anything after this is considered to be commentary. In the setup
file lines that do not start with an alphabetic character are seen as commentary. The sizes of the
buffers are given in bytes, unless mentioned otherwise. A word is 2 bytes for 32 bit machines and
4 bytes for 64 bit machines.

In FORM version 3.3 and later, it is also allowed to define preprocessor variables (see also 3.1)
in the setup file. In addition one can use preprocessor variables in the setup, provided it is not in
the name of the parameter/keyword.
bracketindexsize Maximum size in bytes of any individual index of a bracketted expression.

Each expression will have its own index. The index starts with a relatively
small size and will grow if needed. But it will never grow beyond the spec-
ified size. If more space is needed, FORM will start skipping brackets and
find those back later by linear search. See also chapter 9 and section 7.11.

CommentChar This should be followed by one or more blanks and a single non-blank char-
acter. This character will be used to indicate commentary, instead of the
regular ∗ in column 1.
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CompressSize When compressing output terms, FORM needs a compression buffer. This
buffer deals recursively with compression and decompression of terms that
are either written or read. Its size will be at least MaxTermSize but when
there is heavy use of expressions in the right hand side of definitions or
substitution it would have to be considerably longer. It is hoped that in the
future this parameter can be eliminated. CompressSize should be given in
bytes.

ConstIndex This is the number of indices that are considered to be constant indices
like in fixed vector components (the so-called fixed indices). The size of
this parameter is not coupled to any array space, but it should not go much
beyond 1000 on a 32 bit machine. On a 64 bit machine it can go considerably
further.

ContinuationLines The maximum number of continuation lines, after which expressions will be
broken apart when printed. The value of 0 means that no limit is imposed.
The precise format of continuation lines depend on the current format (see
7.62) settings; #write instruction also allows for additional control (see
3.68).

Define The syntax is as in the #define instruction in the preprocessor (see 3.1),
with the remark that in the setup file there should be no leading # character
as that would make the line into commentary. Example:
define MODULUS "31991"

which could be used at a later point in the program to activate a modulus
statement (see 7.92).

DotChar There should be a single character following this name (and the blank(s)
after it). This character will be used instead of the , when dotproducts
are printed in Fortran output. This option is needed because some Fortran
compilers do not recognize the underscore as a valid character. In the olden
days one could use here the dollar character but nowadays many Fortran
compilers do not recognize this character as belonging to a variable name.

FunctionLevels The maximum number of levels that may occur, when functions have func-
tions in their arguments.

HideSize The size of the hide buffer. The size of this buffer is normally set equal to
scratchsize (see below). If one uses the setting of HideSize after the setting
of ScratchSize, one can give the hide buffer its own size. There are cases
that this can make the program faster.

IncDir Directory (or path of directories) in which FORM will look for files if they
are not to be found in the current directory. This involves files for the
#include and #call instructions. This variable takes precedence over the
Path variable.

InsideFirst Not having any effect at the moment.

JumpRatio See the endswitch (7.50) statement.
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MaxNumberSize Allows the setting of the maximum size of the numbers in FORM. The
number should be given in words. For 32 bit systems a word is two bytes
and for 64 bit systems a word is 4 bytes. The number size is always limited
by the maximum size of the terms (see MaxTermSize). Actually it has
to be less than half of MaxTermSize because a coefficient contains both a
numerator and a denominator. It is not always a good idea to have the
number size at its maximum value, especially when MaxTermSize is large.
In that case it could be very long before a runaway algorithm runs into
limitations of size (arithmetic for very long fractions is not very fast due to
the continuous need for computing GCD’s)

MaxTermSize This is the maximum size that an individual term may occupy in words.
This size does not affect any allocations. One should realize however that
the larger this size is the heavier the demand can be on the workspace,
because the workspace acts as a heap during the execution and sometimes
allocations have to be made in advance, before FORM knows what the
actual size of the term will be. Consequently the evaluation tree cannot be
very deep, when WorkSpace / MaxTermSize is not very big. MaxTermSize
controls mainly how soon FORM starts complaining about terms that are
too complicated. Its absolute maximum is 32568 on 32 bit systems and
about 109 on 64 bit systems (of course the workspace would have to be
considerably larger than that....).

MaxWildCards The maximum number of wildcards that can be active in a single matching
of a pattern. Under normal circumstance the default value of 100 should be
more than enough.

NoSpacesInNumbers Long numbers are usually spread over several lines by placing a backspace
character at the end of each line and then continuing at the next line. For
cosmetic purposes FORM puts usually a few blank spaces at the beginning
of the new line. FORM itself can read this but some programs cannot.
Hence one can put FORM in a mode in which these blanks are omitted.
The values of the variable are ON or OFF. There is also a command to
change this behaviour at runtime. See the on and off commands in sections
7.110 and 7.109.

NumStoreCaches This number determines how many store caches (see the description of the
SizeStoreCache setup parameter below) there will be. In the case of parallel
processing this will be the number of caches per processor.

NwriteStatistics When this word is mentioned, the default setting for the statistics is that
no run time statistics will be shown. Ordinarily they will be shown.

NwriteThreadStatistics
This variable has the values ON or OFF. It controls for TFORM whether
the statistics of the individual threads will be printed. The default value is
ON.
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OldOrder A special flag (values ON/OFF) by which one can still select the old option
of not checking for the order of statements inside a module. This should
be used only in the case that it is nearly impossible to change a program
to the new mode in which the order of the statements (declarations etc) is
relevant. In the future this old mode may not exist.

Parentheses The maximum number of nestings of parentheses or functions inside func-
tions. The variable may be eliminated in a later version.

Path Directory (or path of directories) in which FORM will look for files if they
are not to be found in the current directory. This involves files for the
#include and #call instructions. FORM will test this path after a potential
path specified as IncDir.

ProcedureExtension The extension that will be used by FORM for finding the procedures that
are in separate files. Restrictions on the strings used are as explained in the
preprocessor #procedureextension instruction in section 3.46.

ProcessBucketSize
For the parallel version ParFORM. It is ignored in other versions. Tells
ParFORM how many terms there should be in the buckets that are being
distributed over the secondary processors. See also 7.119.

ResetTimeOnClear The value is ON or OFF. The default value is ON. This means that
by default the clock is reset after each .clear (see chapter 4 on modules)
instruction at the end of a module.

ScratchSize The size of the input and the output buffers for the regular algebra process-
ing. Terms are read in in chunks this size and are written to the output file
using buffers of this size. There are either two or three of these buffers, de-
pending on whether the hide facility is being used (see 7.69). These buffers
must have a size that is at least as large as the MaxTermSize. These buffers
act as caches for the files with the extension .sc1, .sc2 and .sc3. See also
the HideSize parameter above for the independent setting of the size of the
hide buffer.

SizeStoreCache The size of the caches that are used for reading terms when stored ex-
pressions are used in the r.h.s. of a statement. Typically there are several
such caches and they make the reading much faster. In the case of parallel
processing these caches become very important because without them the
different processes may all want to read from the .str file at the same time
and execution speed will suffer badly. The number of store caches is deter-
mined by the NumStoreCaches setup parameter which is described above.
The size of these caches doesn’t have to be very large as compared to some
of the other buffers. It is recommended though to have them at least as
large as MaxTermSize (see above).
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SortType Possible values are ”lowfirst”, ”highfirst” and ”powerfirst”. ”lowfirst” is the
default. Determines the order in which the terms are placed during sorting.
In the case of lowfirst, lower powers of symbols and dotproducts come before
higher powers. In the case of highfirst it is the opposite. In the case of
powerfirst the combined powers of all symbols together are considered and
the highest combined powers come first. See also the on statement in 7.110.

TempDir This variable should contain the name of a directory that is the directory
in which FORM should make its temporary files. If the -t option is used
when FORM is started, the TempDir variable in the setup file is ignored.
FORM can create a number of different temporary files.

TempSortDir This variable should contain the name of a directory that is the directory
in which FORM should make its temporary sort files. If the -ts option is
used when FORM is started, the TempSortDir variable in the setup file is
ignored. If TempSortDir is not specified, then the value of TempDir is used
also for sort files.

ThreadBucketSize Only relevant for TFORM. The size of the number of terms sent to the
workers simultaneously. For details see the chapter on the parallel version
(18).

ThreadLoadBalancing Only relevant for TFORM. Possible values are ON or OFF. For details see
the chapter on the parallel version (18).

Threads Only relevant for TFORM (see chapter on the parallel version). Specifies
the default number of worker threads to be used. The values 0 and 1 will
indicate that running will only be done by the master thread (18).

ThreadScratchOutSize The size of the output scratch buffers for each of the worker threads. These
buffers will be used by TFORM when the InParallel statement 7.78 is ac-
tive. They are used to catch the output of the expressions as processed
by the individual workers before they are copied to the output scratch
buffer/file of the master. The output scratch buffer/file of each worker
will never contain more than one expression at a time.

ThreadScratchSize The size of the input scratch buffers for each of the worker threads. These
buffers are only used when the main scratch buffers of the master process
aren’t sufficient and scratch files have been made. When the buffers of the
master are big enough, the workers only use pointers to the buffer of the
master. Once there are scratch files the buffer is used for caching the input
from those files. In that case each worker has its own cache. For reading
purposes it can actually be counter productive if these buffers are very large.
This parameter sets the value for the input and the hide scratch files. The
output scratch size for the workers is set with the ThreadScratchOutSize
parameter.
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TotalSize Puts FORM in a mode in which it tries to determine the maximum space
occupied by all expressions at any given moment during the execution of
the program. This space is the sum of the input/output/hide scratch files,
the sort file(s) and the .str file. This maximum is printed at the end of the
program. The same can be obtained with the ”On TotalSize” statement
(see 7.110) or the -T option in the command tail when FORM is started
(see 1).

WorkSpace The size of the heap that is used by the algebra processor when it is eval-
uating the substitution tree. It will contain terms, half finished terms and
other information. The size of the workspace may be a limitation on the
depth of a substitution tree.

WTimeStats Turns on the wall-clock time mode in the statistics. See the ‘On
wtimestats’ statement 7.110.

Variables that take a path for their value expect a sequence of directories, separated by colon
characters as in the UNIX way to define such objects.

The above parameters are conceptually relatively easy. The parameters that are still left are
more complicated and are often restricted in their size by some relationships. Hence it is necessary
to understand the sorting inside FORM a little bit before using them. On the other hand these
parameters can influence the performance noticeably. See also chapter 16 for more details.

When terms are send to ‘output’ by the main algebra engine, they are put inside a buffer. This
buffer is called the ‘small buffer’. Its size is given by the variable SmallSize. When this buffer
is full, or when the number of terms in this buffer exceeds a given maximum, indicated by the
variable TermsInSmall, the contents of the buffer are sorted. The sorting is done by pointers, hence
it is important that the small buffer resides inside the physical memory. During the sorting it may
happen that coefficients are added. The sum of two rational numbers can take more space than
any of the individual numbers, so there will be a space problem. This has been solved by the
construction of an extension to the small buffer. The variable SmallExtension is the size of the
small buffer together with this extension. The value for SmallExtension will always be at least 7/6
times the value of SmallSize.

The result of the sorting of the small buffer is written to the ‘large buffer’ (with the size
LargeSize) as a single object and the filling of the small buffer can resume. Whenever there is not
enough room in the large buffer for the result of sorting the small buffer, or whenever there are
already a given number of these sorted ‘patches’ in it (controlled by the variable LargePatches)
the buffer will be sorted by merging the patches to make room for the new results. The output is
written to the sort file as a single patch. Then the results from the small buffer can be written to
the large buffer. This game can continue till no more terms are generated. In the end it will be
necessary to sort the results in the intermediate sort file. This can be done with up to FilePatches
at a time. Because file operations are notoriously slow the combination of the small buffer, the
small extension and the large buffer is used for caching purposes. Hence this space can be split in
‘FilePatches’ caches. The limitation is that each cache should be capable to contain at least two
terms of maximal size. This means that the sum of SmallExtension and LargeSize must be at least
FilePatches times 2*MaxTermSize*(bytes in short integer). It is possible to set the size of these
caches directly with the variable SortIOsize. If the variable is too large, the variable FilePatches
may be adjusted by FORM. If there are more than FilePatches patches in the sort file, a second
sort file is needed for the output of each ‘superpatch’. When the first sort file has been treated, the
second sort file can be treated in exactly the same way as its predecessor. This process will finish
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eventually. When there are at most FilePatches patches in a sort file, the output of their merging
can be written directly to the regular output. For completeness we give a list of all these variables:
FilePatches The maximum number of patches that can be merged simultaneously, when

the intermediate sort file is involved.

LargePatches The maximum number of patches that is allowed in the large buffer. The
large buffer may reside in virtual memory, due to the nature of the sort that
is applied to it.

TermsInSmall The maximum number of terms that is allowed in the small buffer before it is
sorted. The sorted result is either copied to the large buffer or written to the
intermediate sort file (when LargeSize is too small).

SmallSize The size of the small buffer in bytes.

SmallExtension The size of the small buffer plus its extension.

LargeSize The size of the large buffer.

SortIOsize The size of the buffer that is used to write to the intermediate sorting file
and to read from it. It should be noted that if this buffer is not very large,
the sorting of large files may become rather slow, depending on the operating
system. Hence we recommend a potential fourth stage in the sorting over
having this number too small to fit more filepatches in the combined small
and large buffer. Setting the small and large buffers to a decent size may
avoid all problems by a: making more space for the caching, b: creating fewer
file patches to start with.

There is a second set of the above setup parameters for sorts of subexpressions as in function
arguments or in the term environment (see 7.149). Because these things can happen with more than
one level, whatever allocations have to be made (during runtime when needed) may have to be made
several times. Hence one should be far more conservative here than with the global allocations.
Anyway, those sorts should rarely involve anything very big. With the function arguments the
condition is that the final result will fit inside a single term, but with the term environment no
such restriction exists. The relevant variables here are subfilepatches, sublargepatches, sublargesize,
subsmallextension, subsmallsize, subsortiosize and subtermsinsmall. Their meanings are the same
as for the variables without the sub in front.

When FORM is running in parallel mode (either TFORM or ParFORM) each worker will
need its own buffers. In ParFORM in which the processors each control their own memory, the
size of each of these buffers are the same as for the master process. In TFORM with its shared
memory the above sizes refer to the buffers of the master thread. The workers each get basically
buffers with 1/N times the size of the buffer of the master. This may get made a bit bigger when
potential conflicts with MaxTermSize occur.

The (typically) largest buffers (the small and large buffers) may be reallocated at the end of a
single module (see #sortreallocate (3.59)) or at the end of each module (see “On sortreallocate;”
(7.110)). In some cases this can significantly reduce FORM’s memory usage as measured by
“resident set size”. For programs which consist of a large number of very quickly-running modules,
this can incur a noticable performance penalty if performed every module.

The default settings are
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Variable 32-bits 64-bits tform 64-bits

bracketindexsize 200000 200000 200000
commentchar ∗ ∗ ∗
compresssize 90000 90000 90000
constindex 128 128 128
continuationlines 15 15 15
dotchar . . .
filepatches 256 256 256
functionlevels 30 30 30
hidesize 50000000 50000000 50000000
incdir . . .
insidefirst ON ON ON
largepatches 256 256 256
largesize 50000000 800000000 1500000000
maxnumbersize 200 200 200
maxtermsize 10000 40000 40000
maxwildcards 100 100 100
nospacesinnumbers OFF OFF OFF
numstorecaches 4 4 4
nwritefinalstatistics OFF OFF OFF
nwritestatistics OFF OFF OFF
nwritethreadstatistics OFF OFF OFF
oldorder OFF OFF OFF
parentheses 100 100 100
path . . .
processbucketsize 1000 1000 1000
scratchsize 50000000 500000000 500000000
sizestorecache 32768 32768 32768
smallextension 20000000 300000000 600000000
smallsize 10000000 150000000 300000000
sortiosize 100000 100000 100000
sorttype lowfirst lowfirst lowfirst
subfilepatches 64 64 64
sublargepatches 64 64 64
sublargesize 26880512 26880512 26880512
subsmallextension 3840032 3840032 3840032
subsmallsize 2560016 2560016 2560016
subsortiosize 32768 32768 32768
subtermsinsmall 10000 10000 10000
tempdir . . .
tempsortdir . . .
termsinsmall 100000 2000000 3000000
threadbucketsize 500 500 500
threadloadbalancing ON ON ON
threads 0 0 0
threadsortfilesynch OFF OFF OFF
threadscratchoutsize 2500000 2500000 2500000
threadscratchsize 100000 100000 100000
workspace 10000000 40000000 40000000
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If one compares these numbers with the corresponding numbers for older versions one will notice
that here we assume that the standard computer will have much more memory available than in
the ‘old time’. Basically we expect that a serious FORM user has at least 64 Mbytes available. If
it is considerably less one should define a setup file with smaller settings.

More recently a new notation for large numbers has been allowed. One can use the characters
K, M, G and T to indicate kilo (three zeroes), mega (6 zeroes), giga (9 zeroes) and tera (12 zeros)
as in 10M for 10000000.

To find out what the setup values are, one can use the ‘ON,setup;’ statement (7.110).
In version 3.3 and later one may use environment variables for the values of the setup parameters,

either in the setup file or at the beginning of the .frm file. The environment variable is used as
a preprocessor variable in the sense that its name is enclosed in a backquote-quote pair as in
‘VARNAME’. The variable will be looked for and if found it will be substituted. This can however
not be done in a recursive way, because the regular routines that take care of the preprocessor
variables are not active yet when the setups are read.
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Chapter 18

The parallel version

FORM has two versions that can make use of several processors simultaneously. Which version
can be used profitably depends very much on the architecture of the computer one is using. Each
version has its own control commands which are ignored by the other version and the sequential
version of FORM. The parallel versions are:

� ParFORM: This version runs on processors that have their own memory and preferably
their own disk. Each processor gets a copy of the complete program and MPI is used for the
communication. When the network connections are very fast one can also use ParFORM
on computer clusters. ParFORM was developed at the university of Karlsruhe.

� TFORM: This version uses POSIX threads and runs on computers which have several pro-
cessors with a shared memory. Data is kept as common data as much as possible and only
when a worker thread gets a task a minimal amount of data is copied to its private buffers.
Currently it seems to perform best on computers with two or four processors.

Both ParFORM and TFORM suffer from the same bottlenecks. At the beginning of a module
there is a single expression, managed by a master process which then has to distribute the terms
over the workers. At the end of the module the sorted results of the workers have to be gathered in
by the master and merged into a single expression again. Efficiency depends critically on how fast
the terms can be given to the workers, how well the load for the workers is balanced and how much
time the master has to spend in the final stages of the sorting. Another factor is the complexity of
the operations inside the module. If the module has very few and simple statements, the gain in
performance will be much less than when the module has much work to do for each term.

The ParFORM and TFORM specific code is internally completely separated. This offers the
possibility that sooner or later the two can be combined to allow efficient running on clusters of
dual or quad processor machines. Whether this would give significant extra benefits needs to be
investigated. When this project will be undertaken depends very much on the availability of such
computers.

Because ParFORM uses MPI and because different MPI environments are normally not binary
compatible, the port to a new machine requires a recompilation of the source code and a relinking
to the MPI library. Hence we do not have executables in the distribution site. One needs to build
ParFORM on one’s computer. For TFORM the situation is much more favorable. Its treatment
of the parallelization follows the standard for POSIX threads (or PThreads) for which the libraries
are implemented on almost any UNIX system and many other systems.

The ideal of a parallel version of FORM is that it should execute nearly any regular FORM
program, whether it was written for parallelization or not. And it should execute much faster
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on several processors than the sequential version on a single processor. The performance is given
by the improvement factor which is the execution time of the sequential version divided by the
execution time of the parallel version as measured in real time (not CPU time) on a computer that
has no other major tasks. The ideal would of course be that a computer with N processors would
give an improvement factor of N. It should be easy to see that this ideal cannot be reached, due
to the bottlenecks described above. Also the compilation takes place on a single processor and the
instructions of the preprocessor are typically also tasks for a single thread/processor. Yet for small
numbers of processors one can do rather well. Many old calculations, when repeated with TFORM
would give improvement factors above 1.7 on a dual pentium machine and around 3 or a bit higher
on a quad opteron machine. This was without modifying even a single statement in the programs.
Of course these numbers depend very much on the type of the problem and the programming style
used. As of yet there is very little experience with parallel versions of FORM. Hence people will
have to discover what are good ways of getting the most out of their computer. It is expected that
there will be much progress in the coming years.

First we will now discuss the running of the two versions. After that we will describe some
common syntactic problems.

18.1 TFORM

Let us assume that the executable of TFORM is called tform. It is used exactly the same way
as the sequential version of FORM (named form) is used with the exception of the possibility to
specify the number of worker threads with the -w option. The command

tform -w4 calcdia

would execute the program in the file calcdia.frm, using 4 worker threads, in addition to the one
master thread. When the -w option is not given or when only one worker thread is asked for, tform
will run the whole program inside the master thread. Because tform always has some overhead this
is usually a little bit slower than using form. Strange enough there are exceptions although this
may have to do with the fact that measuring the time of a program doesn’t always give the same
numbers.

It is also possible to specify the number of worker threads in the setup file, using the line

Threads 4

for 4 threads. And as with all setup parameters one can pass this information also via the environ-
ment variable FORM threads or with the line

#: Threads 4

at the beginning of the program file.
When the master passes terms to the workers, it has to signal the workers that there is some

data. In their turn, each worker has to send the master a signal when it has completed its task
and it is ready for more. Such signals cost time. Hence it is usually best to send terms in groups,
called buckets. The optimal number of terms in a bucket depends very much on the problem and
the size of the expression. Bigger buckets mean less overhead in signals. If the buckets are too big
the workers may have to wait too much. Values between 100 and 1000 are usually rather good.
There is a default bucket size which is typically around 500. The user can change this value in two
ways: The first is with the ThreadBucketSize setup parameter in the form.set file (or at the startup
of the program file, or with the FORM threadbucketsize environment variable) and the second is
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with the ThreadBucketSize statement (see 7.151) which is a declaration like Symbol or Dimension.
The first terms in an expression will be sent in smaller buckets to get the workers something to do
as soon as possible.

Usually the bigger buckets give a better performance, but they suffer from a nasty side-effect.
Complicated terms that need much execution time have a tendency to stick together. Hence there
can be one bucket with most of the difficult terms and at the end of the module all workers and
the master have to wait for one worker to finish. This can be improved with a load balancing
mechanism. The current version will take terms from the buckets of workers that take more time
than the others. By default this mechanism is on, but it can be switched on or off with the ‘on
ThreadLoadBalancing;’ and ‘off ThreadLoadBalancing;’ statements. It can also be set as one of
the setup parameters in the form.set file with

ThreadLoadBalancing OFF

or

ThreadLoadBalancing ON

or at the start of the program or in the environment.
The LINUX operating system tries to cache files that are to be written to disk. Somehow,

when several big files have to be written it gets all confused (it is not known in what way). This
means that if tform produces 4 large sort files eventually the system becomes intolerably slow. At
one time a test program was 4.5 times slower with 4 worker processors than with just the master
running, even though the master had a single even bigger sort file. This has been improved by
having the file-to-file sort of the threads changed into a file-to-masterbuffers-to-combined-output.
Yet the writing and subsequent merging of the 4 files at the same time can be disastrous. Work
is done to improve this, but it may not be easy to circumvent facilities of the operating system.
Apparently the quality of the drivers is crucial here.

One can switch the parallel processing on or off (for the complete module) at any moment in
the program with the statements

On Threads;

Off Threads;

or using the moduleoption statement (7.91) that affects TFORM’s behaviour for just the current
module:

ModuleOption Parallel;

ModuleOption NoParallel;

Additionally one can switch the statistics per thread on or off with

On ThreadStats;

Off ThreadStats;

When the thread statistics are switched off only the statistics of the master thread are printed
which is usually only the final statistics for each of the expressions.

The timing information in the statistics is the CPU time spent by the thread that prints the
statistics. Hence the total CPU time spent is the sum of the time of all workers and the time of
the master. In good running the time of the master should be the smallest number. When the
statistics per thread are switched off, only the statistics of the master process will be printed with
this ‘small’ number. Hence it may look like the program isn’t progressing very much.
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For debugging purposes the term by term print statement (see 7.116) is equipped with the %W

and %w format strings. The first will cause the printing of the number of the current thread and
the CPU-time used thus far in that thread. The second will only print the number of the current
thread. The thread with the number zero is the master thread. Putting a statement like

Print +f "<%W> %t";

would show which thread is processing which term and when.
These are all the commands that specifically concern TFORM. When more experience is

gained using TFORM, more parameters and commands may become available.
The fact that the threads need private data makes that TFORM will use more memory than

FORM. Most of the buffers are not very large, but of course there are some buffers which need to
be large, like the sort buffers and the scratch input/hide buffers. The sizes that the user specifies
for these buffers are for the corresponding buffers of the master. The workers get each 1/N times
the size for these buffers, when there are N workers. In the case that makes these buffers too small
because of for instance MaxTermSize, the buffers may become larger.

18.2 ParFORM

Let us call the executable of ParFORM parform. The user must execute parform as an MPI
application. In many MPI implementations, this is done by using the mpirun command:

mpirun -np 4 parform calcdia

This example executes the program in the file calcdia.frm, using 4 processes,in which one process
is the master process and the other 3 processes are the worker processes. One has to keep in mind
that in some MPI implementations environment variables will not be passed to an MPI application.
Alternatively extra options are needed for passing them. If one wants to run ParFORM under
a job scheduler on a computer cluster environment, one may need to write a job script, which
depends to a great extent on the environment.

ParFORM uses MPI for communications between the master and workers. Actually terms are
distributed by using point-to-point send/receive operations of MPI. Since there is some latency
for establishing a connection between processes, especially between those running on different
computers, it is best to send terms in groups, like buckets in TFORM. The default number of
terms in a bucket is currently 1000 in ParFORM. It can be changed with the ProcessBucketSize
statement (7.119) if this is deemed necessary. It can also be changed for the current module with
the statement (7.91).

ModuleOption ProcessBucketSize number;

And finally it can also be changed in the setup, using the ProcessBucketSize (17) setup parameter.
The first terms in an expression will be sent in smaller buckets to get the workers something to do
as soon as possible.

One can switch the parallel processing on or off (for the complete module) at any moment in
the program with the statements

On Parallel;

Off Parallel;

or using the moduleoption statement (7.91) that affects ParFORM’s behaviour for just the current
module:

241



ModuleOption Parallel;

ModuleOption NoParallel;

Additionally one can switch the statistics per process on or off with

On ProcessStats;

Off ProcessStats;

When the process statistics are switched off only the statistics of the master process are printed
which are usually only the final statistics for each of the expressions.

As in TFORM, %W and %w in the term by term print statement (see 7.116) are available in
ParFORM. They print the number of the current process and the CPU-time used thus far in that
process.

In principle one can run all FORM or TFORM programs with ParFORM. In practice Par-
FORM is not so efficient for some problems, in which more data have to be synchronized between
the master and the workers. The cases for which ParFORM needs to send data via MPI include:

� The redefine statements, which modify preprocessor variables on the workers.

� Modifying $-variables in regular statements with a moduleoption statement (see 6.1, 7.91
and 18.3).

� Expression names appearing in right hand sides of definition or substitution statements.

The last case may need more explanation. Consider the following code:

Local G = F;

id a = F;

where the expression F is supposed to be already defined. The point is that these substitutions of
the expression F are performed on the workers. The workers, however, do not know the contents
of the expression F because it is stored on the master. Therefore, before executing this module
ParFORM needs to make the master broadcast the expression F to the workers. This may be
quite time-consuming because the expression could be very large.

18.3 Some problems

Both parallel versions share a number of problems which are inherent to running in an environment
in which the order in which terms are processed isn’t deterministic. Most of these problems concern
$-variables. They present a mix between private and common information. Consider the code

id f(x?$xvar) = g(x);

id ......

id a^n? = b^n*h($var);

Of course one could do this simple example differently, but we are discussing the principle. What
we have here is that each term that passes the first statement will acquire its own value of $var,
to be used a bit later. It is clear that if we have a common administration of $-variables we would
have to ‘lock’ the value for a considerable amount of time, thereby spoiling much of the gains of
parallel processing. Hence in this case it would be best that each worker maintains its own local
value of $var. But in the following example we have the opposite:
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#$xmax = -1;

if ( count(x,1) > $xmax ) $xmax = count_(x,1);

Here we collect a maximum power in the variable $xmax. If each worker would have a local value
of $xmax, the question is what to do with all these local values at the end of the module. A human
will see that here we are collecting a maximum, but the computer cannot and should not see this.
Hence the general rule in parallel processing is that when there are $-variables obtaining a value
during the algebraic phase of a module the entire module is run sequentially, unless FORM has
been helped with a moduleoption statement for each of the variables involved. Hence in the last
example

ModuleOption Maximum $xmax;

would tell FORM how to combine the local values in ParFORM (ParFORM maintains local
values of all $-variables). InTFORM it would put the value directly into the central administration,
provided it is bigger than the previous value. Only during the update the variable would have to
be locked.

There are several options in the moduleoption statement:

� Maximum: The variable must have a numerical value and the maximum is collected.

� Minimum: The variable must have a numerical value and the minimum is collected.

� Sum: The variable must have a numerical value and the sum is collected.

� Local: The value will be kept privately and no attempt is made to put it in the central
administration, neither during the execution of the module, nor at the end. If there was
already a variable by this name in the central administration it will keep the value it had
before the module started execution. At the end of the module, all private values will be
forgotten.

The redefine statement is a major inefficiency in a parallel environment. It redefines a pre-
processor variable and there is only a single bookkeeping for such variables. This means that the
variable has to be sent to the master process (ParFORM) or that a lock has to be placed to
prevent other workers to write to the same storage simultaneously (TFORM). In addition the
final value in the preprocessor variable will be determined by the last term processed in any of the
workers. This may not be the same term in different runs. It is up to the user to write programs
that still give correct results under such conditions. The best way around the inefficiency is using
$-variables and preprocessor instructions. We show this in an example in which we construct the
equivalent of a conditional repeat that includes a .sort instruction.

#do i = 1,1

statements

if ( count(x,1) > 0 ) redefine i "0";

.sort

#enddo

To run this in parallel, it is better to use the following code.

#do i = 1,1

#$i = 1;

statements
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if ( count(x,1) > 0 ) $i = 0;

ModuleOption minimum $i;

.sort

#redefine i "‘$i’"

#enddo

In this program the centrally stored value of $i is updated at most once. Admittedly it is not as
simple as the redefine statement, but it works in all versions of FORM starting with version 3.0.

It should be noted that when a new expression is defined in its defining module it starts out as
a single term. Hence it cannot benefit from parallelization in that module. Therefore the code

#define MAX "200"

Symbols x0,...,x10;

Local F = (x0+...+x‘MAX’)^3;

id x1 = -x2-...-x‘MAX’;

.end

will execute inside a single worker while

#define MAX "200"

Symbols x0,...,x10;

Local F = (x0+...+x‘MAX’)^3;

.sort

id x1 = -x2-...-x‘MAX’;

.end

will make the first expansion inside a single worker and the more costly substitution can be made
in parallel. A better load balancing algorithm in which at any node in the expansion tree tasks can
be given to idle workers would solve this problem, but due to some complications this has not yet
been implemented. The structure of FORM will however allow such an implementation.
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Chapter 19

External communication

To communicate with other programs FORM is equipped with special commands. One set of
commands is rather simple in nature: the #pipe (see section 3.41) and #system (see section 3.62)
instructions allow FORM to run programs in the regular command shell. Sometimes however much
more sophistication is needed because these instructions have a rather large overhead and need to
start new processes each time they are executed. Hence a second more extensive set of instructions
was developed that allows the start of an external process, keep it open and maintain a two way
communication with it. Similarly it is possible to start FORM in such a way from other programs.
Many details of the method of implementation and a number of examples are given in a separate
paper which can also found in the FORM site (http://www.nikhef.nl/∼form) under publications
(look for the file extform.ps or extform.pdf). Here we will just show the essentials and the syntax.

The basic idea is to open (by means of the preprocessor) a number of external channels (there
is no reason to be restricted to just one) by starting the corresponding program in a command
shell. This program is kept running and a number is assigned to each channel. Next we can select
a channel and communicate with it. To not run into syntactic problems, because the external
program may have different ideas of what a formula should look like, one may have to install filters.
These are additional programs that should be prepared before the FORM program is started that
process the communication to convert from one notation to the other.

19.1 #external

Syntax:
#external [”prevar”] systemcommand

See also
Starts the command in the background, connecting to its standard input and output. By default,
the external command has no controlling terminal, the standard error stream is redirected to
/dev/null and the command is run in a subshell in a new session and in a new process group (see
the preprocessor instruction #setexternalattr).

The optional parameter “prevar” is the name of a preprocessor variable placed between double
quotes. If it is present, the “descriptor” (small positive integer number) of the external command
is stored into this variable and can be used for references to this external command (if there is
more than one external command running simultaneously).

The external command that is started last becomes the “current” (active) external command.
All further instructions #fromexternal and #toexternal deal with the current external command.
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19.2 #toexternal

Syntax:
#toexternal ”formatstring” [,variables]

See also
Sends the output to the current external command. The semantics of the "formatstring" and the
[,variables] is the same as for the #write instruction, except for the trailing end-of-line symbol.
In contrast to the #write instruction, the #toexternal instruction does not append any newline
symbol to the end of its output.

19.3 #fromexternal

Syntax:
#fromexternal[+−] [”[$]varname” [maxlength]]

Appends the output of the current external command to the FORM program. The semantics differ
depending on the optional arguments. After the external command sends the prompt, FORM will
continue with a next line after the line containing the #fromexternal instruction. The prompt
string is not appended. The optional + or - sign after the name has influence on the listing of the
content. The varieties are:

#fromexternal[+−]
The semantics is similar to the #include instruction but folders are not supported.

#fromexternal[+−] ”[$]varname”
is used to read the text from the running external command into the preprocessor variable varname,
or into the dollar variable $varname if the name of the variable starts with the dollar sign “$”.

#fromexternal[+−] ”[$]varname” maxlength
is used to read the text from the running external command into the preprocessor (or dollar)
variable varname. Only the first maxlength characters are stored.

19.4 #prompt

Syntax:
#prompt [newprompt]

Sets a new prompt for the current external command (if present) and all further (newly started)
external commands.

If newprompt is an empty string, the default prompt (an empty line) will be used.
The prompt is a line consisting of a single prompt string. By default, this is an empty string.

19.5 #setexternal

Syntax:
#setexternal n

Sets the “current” external command. The instructions #toexternal and #fromexternal deal with
the current external command. The integer number n must be the descriptor of a running external
command.
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19.6 #rmexternal

Syntax:
#rmexternal [n]

Terminates an external command. The integer number n must be either the descriptor of a running
external command, or 0.

If n is 0, then all external programs will be terminated.
If n is not specified, the current external command will be terminated.
The action of this instruction depends on the attributes of the external channel (see the #setex-

ternalattr (section 19.5) instruction). By default, the instruction closes the commands’ IO channels,
sends a KILL signal to every process in its process group and waits for the external command to
be finished.

19.7 #setexternalattr

Syntax:
#setexternalattr list of attributes

sets attributes for newly started external commands. Already running external commands are not
affected. The list of attributes is a comma separated list of pairs attribute=value, e.g.:

#setexternalattr shell=noshell,kill=9,killall=false

Possible attributes are:

kill Specifies which signal is to be sent to the external command either before the termination of
the FORM program or by the preprocessor instruction #rmexternal. By default this is 9
(SIGKILL). Number 0 means that no signal will be sent.

killall Indicates whether the KILL signal will be sent to the whole group or only to the initial
process. Possible values are “true” and “false”. By default, the kill signal will be sent to
the whole group.

daemon Indicates whether the command should be “daemonized”, i.e. the initial process will
be passed to the init process and will belong to the new process group in the new session.
Possible values are “true” and “false”. By default, “true”.

shell specifies which shell is used to run a command. (Starting an external command in a subshell
permits to start not only executable files but also scripts and pipelined jobs. The disadvantage
is that there is no way to detect failure upon startup since usually the shell is started success-
fully.) By default this is “/bin/sh -c”. If set shell=noshell, the command will be started
by the instruction #external directly but not in a subshell, so the command should be a name
of the executable file rather than a system command. The instruction #external will dupli-
cate the actions of the shell in searching for an executable file if the specified file name does
not contain a slash (/) character. The search path is the path specified in the environment
by the PATH variable. If this variable isn’t specified, the default path “:/bin:/usr/bin” is
used.

stderr specifies a file to redirect the standard error stream to. By default it is “/dev/null”. If
set stderr=terminal, no redirection occurs.
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Only attributes that are explicitly mentioned are changed, all others remain unchanged. Note,
changing attributes should be done with care. For example,

#setexternalattr daemon=false

starts a command in the subshell within the current process group with default attributes kill=9
and killall=true. The instruction #rmexternal sends the KILL signal to the whole group, which
means that also FORM itself will be killed.

19.8 An example

An example of the above instructions could be:

1 symbol a,b;

2

3 #external "n1" cat -u

4

5 #external "n2" cat -u

6

7 * cat simply repeats its input. The default prompt is an

8 * empty line. So we use "\n\n" here -- one "\n" is to finish

9 * the line, and the next "\n" is the prompt:

10 #toexternal "(a+b)^2\n\n"

11

12 #setexternal ‘n1’

13 * For this channel the prompt will be "READY\n":

14 #toexternal "(a+b)^3\nREADY\n"

15

16 #setexternal ‘n2’

17 * Set the default prompt:

18 #prompt

19 Local aPLUSbTO2=

20 #fromexternal

21 ;

22

23 #setexternal ‘n1’

24 #prompt READY

25 Local aPLUSbTO3=

26 #fromexternal

27 ;

28

29 #rmexternal ‘n1’

30 #rmexternal ‘n2’

31

32 Print;

33 .end

Two external channels are opened in lines 3 and 5. The UNIX utility “cat” simply repeats its
input. The option “-u” is used to prevent the output buffering. The option is ignored by the GNU
cat utility but is mandatory for non-GNU versions of cat.
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After line 5 the current external channel is ‘n2’. The default prompt is an empty line so in line
10 “\n\n” is used – one“\n” is to finish the line, and the next “\n” is the prompt.

Line 12 switches the current channel to ‘n1’. For this channel the prompt will be “READY”, see
line 24, hence the expression is finished by “\nREADY\n”.

Line 16 switches to the ‘n2’ external channel and line 18 sets the default prompt (which is extra
in this example since the default prompt was not changed up to now).

Results (just a literal repetition of the sent expressions) are read in lines 20 and 26.
Lines 29 and 30 close the external channels.

19.9 Embedding FORM in other applications

The external channel instructions permit FORM to swallow an external program. The same
mechanism can be used in order to embed FORM in other applications.

There is a possibility to start FORM from another program providing one (or more) communi-
cation channels (see below). These channels will be visible from a FORM program as “pre-opened”
external channels existing after FORM starts. There is no need to open them with the #external
instruction. In this case, the preprocessor variable “PIPES ” is defined and is equal to the total
number of the pre-opened external channels. Pre-opened external channel descriptors are contained
in the preprocessor variables “PIPE1 ”, “PIPE2 ”, etc. For example, if ‘PIPES ’ is 3 then there
are 3 pre-opened external channels with the descriptors ‘PIPE1 ’, ‘PIPE2 ’ and ‘PIPE3 ’ so e.g.
the following instruction could be used:

#setexternal ‘PIPE2_’

without

#external "PIPE2_"

The external channel attributes make no sense for the pre-opened channel (see the #setexter-
nalattr instruction (section 19.7)). Formally, they are as follows:

kill=0,

killall=false,

daemon=false,

stderr=/dev/tty,

shell=noshell

In order to activate the pre-opened external channels, the parent application must follow some
standards. Here we describe a low-level protocol, the corresponding C-interface is available from
the FORM distribution site under packages and then externalchannels.

Before starting FORM, the parent application must create one or more pairs of pipes. A pipe is
a pair of file descriptors, one is for reading and another is for writing. In LINUX, see “man 2 pipe”.
The read-only descriptor of the first pipe in the pair and the write-only descriptor of the second
pipe must be passed to FORM as an argument of a command line option “-pipe” in ASCII
decimal format. The argument of the option is a comma-separated list of pairs “r#,w#” where
“r#” is a read-only descriptor and “w#” is a write-only descriptor; alternatively, an environment
variable FORM PIPES containing this list can be used (the command line option overrides the
environment variable). For example, to start FORM with two pre-opened external channels the
parent application has to create first four pipes. Lets us suppose the first pipe was created with the
descriptors 5 and 6, the second pipe has the descriptors 7 and 8, the third pipe has the descriptors
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9 and 10 and the fourth pipe has the descriptors 11 and 12. The descriptors 5 and 8 will be used by
FORM as the input and the output for the first pre-opened external channel while the descriptors
9 and 12 will be used by FORM as the input and the output for the second pre-opened external
channel.

Then the parent application must start FORM with the following command line option:

-pipe 5,8,9,12

Upon startup, FORM sends its PID (the Process Identifier) in ASCIIdecimal format with an
appended newline character to the descriptor 8 and then FORM will wait for the answer from
the descriptor 5. The answer must be two comma-separated integers in ASCII decimal format
followed by a newline character. The first integer corresponds to the FORM PID while the second
one is the parent process PID. If the answer is not obtained after some timeout, or if it is not
correct (i.e. it is not a list of two integers or the first integer is not the FORM PID) then FORM
fails. If everything is correct, FORM creates the pre-opened channel and puts its descriptor in the
preprocessor variable “PIPE1 ”.

Then FORM processes the second pair of arguments, “9,12”.
After all pairs have been processed FORM creates the preprocessor variable “PIPES ” and

puts into this variable the total number of created pre-opened external channels.
The order of processing the pairs of numbers in the argument is fixed exactly as it was described

above i.e. from the left to the right.
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Chapter 20

Spectators

At times expressions contain many terms that will not be treated for many modules to come. For
the actions in those modules they are considered spectator terms and they may consume much
computer time due to their presence during the sorting. For this we have the spectator system in
which we can send those terms to a special file, named a spectator file, in such a way that they can
be picked up at a convenient time in the future. In short:
Spectators are expressions together with a filename. The file is for storage when the spectator
becomes too big. Create a spectator with the statement

CreateSpectator Exprname,"filename";

The file will be made in the same directory where the temporary files are made. Example:

CreateSpectator Yintegrals,"Yfile.spec";

One may send terms to a spectator with the executable statement

ToSpectator Exprname;

An example would be

if ( count(Z,1) == 0 ) ToSpectator Yintegrals;

The terms are dumped into the file as they are at the moment the ToSpectator statement is
executed. No brackets etc. In the future they may be compressed. At the moment they are not.

Recovery of the contents of the spectator is done with the CopySpectator statement as in

CopySpectator NewExp = Yintegrals;

Currently you can only read the spectators this way. You cannot make more complicated con-
structions. You can only do things with the terms of the spectator expression after the contents
have been put in your new expression. The spectator file remains in existence. In later modules
you can still add to it. You cannot read from and add to the same spectator in the same module.
The CopySpectator command can be followed by executable statements in the same module. This
may not be economical because the contents of the spectator have not been sorted. There could
be identical terms that occur many times or even cancel. Better sort them first.

A spectator can be removed from the system with the statement

RemoveSpectator Yintegrals;

It is also possible to truncate a spectator down to zero length with
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EmptySpectator Yintegrals;

You can have as many spectators as you like, but they all have some cache buffers. There may
also be limitations in the file system on the maximum number of open files. The filename for the
spectator is purely for the sake of the users administration and recognition. You cannot carry the
file over to other programs. There is no variable administration in it as in the saved files.

The .global instruction makes a spectator file survive a .store. It is up to the user to make sure
that all the variables in it also survive the .store. There is no checking!

One use of the spectator system would be when integrating many different terms by means of
a very prolonged recursion system in which integrals of a given complexity are reduced to integrals
of lower complexity, but each such reduction may take quite a few steps. One could have:

#do i = ‘MAXCOMPLEXITY’-1,0,-1

CreateSpectator complex‘i’,"complex‘i’.spec";

#enddo

Local F‘MAXCOMPLEXITY’ = ....;

#do i = ‘MAXCOMPLEXITY’-1,1,-1

#do ii = 1,1;

* routine for doing a part of the recursion level ‘i’

....

#do j = ‘i’-1,0,-1

if ( complexityofterm == ‘i’ ) ToSpectator complex‘i’;

#enddo

if ( notyetfinished ) redefine ii "0";

.sort

#enddo

Drop F{‘i’+1};

CopySpectator F‘i’ = complex‘i’;

.sort

RemoveSpectator complex‘i’;

#enddo

*

* and finally, assuming that complexity zero means finished:

*

Drop F1;

CopySpectator F0 = complex0;

.sort

RemoveSpectator complex0;

Some remarks are called for here. If one works with the polyratfun concept and the rational
polynomials become rather complicated, the sorting after the CopySpectator statement can have
serious bottleneck problems in TFORM and ParFORM because the addition of those polynomials
can be rather expensive and much of it ends up in the master processor. This can be made better
with the following construction (assuming the function rat was declared as polyratfun at the moment
of all the ToSpectator statements that wrote to the spectator):

PolyRatFun;

Drop F1;

CopySpactator F0 = complex0;
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ABracket+ rat;

.sort

PolyRatFun rat;

RemoveSpectator complex0;

.sort

First we remove the declaration of rat as polyratfun. Then we read the spectator and sort it such
that all terms that should be added eventually are grouped together. This sorting is very cheap
as only identical terms are combined. Then we declare the polyratfun again and because of the
way the terms are sorted nearly all additions take place inside the workers, hence at maximum
parallelization efficiency.

The above method still contains one inefficiency: because the polyratfun is declared again, the
contents of the rat function need to be ’normalized’ again, while they were already normalized. This
involves calculating a gcd of the numerator and the denominator, which is an expensive operation
and is useless in this case. For this we have a special option in the polyratfun declaration:

PolyRatFun rat-;

This will skip the normalization on the input of the module. One should note however that if one
uses this option under different conditions in which the input rat function might not be normalized,
the program might crash or even give wrong answers. Hence this option should only be used with
the highest degree of caution! This is an option for very experienced users only. No support is
given concerning programs that run correctly without the use of this option and fail when using it.

It should be noted that in the sequential version of FORM this construction is not needed at
all, because there is only one processor anyway.
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Chapter 21

Diagram generation

Starting with version 5.0 FORM is equiped with the diagram generator of Toshiaki Kaneko ”A
Feynman graph generator for any order of coupling constants”, Toshiaki Kaneko(Meiji Gakuin
U.): Comput.Phys.Commun. 92 (1995) 127-152, e-Print: hep-th/9408107. Recently he has repro-
grammed it in C++ and made it into a library, accompanied with a manual (to be published).
FORM makes use of this library and has built its own syntax around it, based on many years of
experience working with the QGRAF generator (”Automatic Feynman graph generation”, Paulo
Nogueira: J.Comput.Phys. 105 (1993) 279-289) and the problems encountered with the large num-
ber of diagrams used with the Mincer and Forcer programs. The whole has been set up in such a
way that if more features are needed they should not be exceptionally hard to be implemented.

In version 4.3 the diagram generator was not complete yet. Effectively it only accepted one
type of scalar particles, but one could have any number of particles at the vertices. Hence it could
be used as a fast topology generator.

For the FORM implementation in version 5.0 and later two new types of variables are intro-
duced, a number of new functions and a number of new preprocessor variables. In addition the
special concept of models is new.

Let us start with models, particles and vertices:

Model Particles and vertices exist only inside the scope of a model. A model is a very special set
of which the elements will be the particles and the vertices. It is defined by

Model name;

Particle .....;

.

.

Particle .....;

Vertex ....;

.

.

Vertex ....;

EndModel;

in which the particle and vertex statements are declarations that will be explained below.
The order is important. All Particle declarations must come before the vertex declarations.

Particle A particle is a very special type of function. It is declared with
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Particle particlename[,antiparticlename][,<sign><number>][,external];

A particle has an antiparticle assigned to it. If no name of an antiparticle is specified the
particle will be its own antiparticle as is the case with for instance a photon or a gluon.
The sign indicates whether a particle is a fermion (-) or a boson (+) and the number is the
dimension of its SU(2) representation. Hence a scalar particle has the number 1, an electron
the number 2, etc. If no spin information is provided it is assumed that the particle is a
scalar. After the spin option there is the external option to indicate that particle will not
be considered for the choice of propagators (edges). To avoid that a scalar particle has an
antiparticle by the name external one should avoid

Particle MyScalar,external;

and use

Particle MyScalar,1,external;

instead.

Vertex A vertex is also a very special type of function. It is declared with

Vertex particle1,...,particlen:coupling;

for an npoint vertex. The coupling constant is either the number 1, or a (product of) symbol(s)
to an integer power. If the symbols have not been declared before they will be declared during
the reading of the vertex declaration.

Some examples:

Model PHI3;

Particle phi,1;

Vertex phi,phi,phi:g;

EndModel;

Model QCD;

Particle qua,QUA,-2;

Particle gho,GHO,-1;

Particle glu,+3;

Vertex qua,QUA,glu:g;

Vertex gho,GHO,glu:g;

Vertex glu,glu,glu:g;

Vertex glu,glu,glu,glu:g^2;

EndModel;

It is possible to have several models simultaneously.
In some cases one might want to generate diagrams in which the internal (multi)loop propagators

are represented as special edges. This requires the definition of more complicated models as in

#do i = 0,‘LOOPS’

Model QCD‘i’;

Particle qua,QUA,-2;
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Particle gho,GHO,-1;

Particle glu,+3;

Vertex qua,QUA,glu:g;

Vertex gho,GHO,glu:g;

Vertex glu,glu,glu:g;

Vertex glu,glu,glu,glu:g^2;

#do j = 1,‘i’-1

Vertex qua,QUA:g^{2*‘j’};

Vertex gho,GHO:g^{2*‘j’};

Vertex glu,glu:g^{2*‘j’};

#enddo

EndModel;

#enddo

in which the two-point vertices are the propagators with j loops. As one can see in this example,
one can have vertices with identical particle contents but different powers of the coupling constants.

One can generate diagrams with the diagrams function. Its syntax is

diagrams_(model,set_of_input_particles,set_of_output_particles,

set_of_external_momenta,set_of_internal_momenta,

number_of_loops_or_coupling_constants,options)

In the case of generating a boson propagator the external symmetry can be used most effectively
by declaring both as input particles as in glu,glu and have the set of output particles empty. The
output is given in terms of a few functions. These functions are

topo Its argument is the number of the topology. This numbering is consistent in the sense
that whether one generates only topologies (with the option TOPOLOGIESONLY ) or the
full diagrams makes no difference for the number of the topology of the diagrams. This
allows relative simple programs to match topologies and renumberings to a predefined list of
topologies, after which this renumbering can then be done later in an economical way for the
full set of diagrams.

node Indicates a vertex. The first argument is the number of the vertex, the second the combined
coupling constants of the vertex and after that the momenta of the particles if only the
topologies are determined, or the particles with their momentum in their argument when the
full diagrams are generated as in:

- 2*topo_(1)*node_(1,1,glu(-Q1))*node_(2,1,glu(-Q2))*node_(3,g,qua(-p1)

,QUA(-p2),glu(Q1))*node_(4,g,qua(-p3),QUA(p1),glu(Q2))*node_(5,g,qua(p2)

,QUA(-p4),glu(-p5))*node_(6,g,qua(p4),QUA(p3),glu(p5))

The external lines are connected by a vertex to the vacuum. Those are the nodes with the
lowest numbers as in node_(1,1,glu(-Q1)) and only a single particle. If we would have
generated the topologies only we would have gotten for the first diagram

+ 1/4*topo_(1)*node_(1,1,-Q1)*node_(2,1,-Q2)*node_(3,g,Q1,-p1,-p2)*

node_(4,g,Q2,p1,-p3)*node_(5,g,p2,-p4,-p5)*node_(6,g,p3,p4,p5)

edge It is also possible to generate the diagrams in terms of edges, either with the nodes:
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+ 1/4*topo_(1)*node_(1,1,-Q1)*node_(2,1,-Q2)*node_(3,g,Q1,-p1,-p2)*

node_(4,g,Q2,p1,-p3)*node_(5,g,p2,-p4,-p5)*node_(6,g,p3,p4,p5)*edge_(1,

Q1,1,3)*edge_(2,Q2,2,4)*edge_(3,p1,3,4)*edge_(4,p2,3,5)*edge_(5,p3,4,6)*

edge_(6,p4,5,6)*edge_(7,p5,5,6)

or without the nodes:

- 2*topo_(1)*edge_(1,glu(Q1),1,3)*edge_(2,glu(Q2),2,4)*edge_(3,QUA(p1),

3,4)*edge_(4,qua(p2),3,5)*edge_(5,QUA(p3),4,6)*edge_(6,qua(p4),5,6)*

edge_(7,glu(p5),5,6)

Edges are only given when the options ask for it.

block A block is a subdiagram that is connected to the remaining part of the diagram by a single
vertex. These blocks are only given if the options ask for it.

Options are provided by means of the sum of a number of predefined preprocessor variables.
They are

ONEPI One-particle irreducible subgraphs only.

WITHOUTINSERTIONS No internal higher order propagators.

NOTADPOLES No tadpoles.

SYMMETRIZE Symmetrize in terms of the external legs.

TOPOLOGIESONLY Generate only topologies.

NONODES Do not put the nodes in the output.

WITHEDGES Put the edges in the output.

WITHBLOCKS Put the blocks in the output.

NOSNAILS No snails in the output.

NOEXTSELF No external self-energy subgraphs.

WITHONEPISETS Print the function onepi containing the one-particle irreducible subsets.

When using the WITHOUTINSERTIONS option one can obtain these higher order subgraphs
by adapting the definition of the model. Here we show this for QCD:

#do i = 0,‘LOOPS’

Model QCD‘i’;

Particle qua,QUA,-2;

Particle gho,GHO,-1;

Particle glu,+3;

Vertex qua,QUA,glu:g;

Vertex gho,GHO,glu:g;

Vertex glu,glu,glu:g;

Vertex glu,glu,glu,glu:g^2;

#do j = 1,‘i’-1
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Vertex qua,QUA:g^{2*‘j’};

Vertex gho,GHO:g^{2*‘j’};

Vertex glu,glu:g^{2*‘j’};

#enddo

EndModel;

#enddo

We see here a number of two-point verticles with a higher power of the coupling constants. This
gives, omitting the quarks and the ghosts:

#define LOOPS "3"

#do i = 0,‘LOOPS’

Model QCD‘i’;

Particle qua,QUA,-2;

Particle gho,GHO,-1;

Particle glu,+3;

Vertex qua,QUA,glu:g;

Vertex gho,GHO,glu:g;

Vertex glu,glu,glu:g;

Vertex glu,glu,glu,glu:g^2;

#do j = 1,‘i’-1

EndModel;

#enddo

Vector Q,Q1,...,Q7,p,p0,...,p21;

Symbols x1,x2,n1,...,n14;

Indices j1,j2,i1,...,i21;

Set QQ:Q1,...,Q7;

Set pp:p1,...,p21;

Set empty:;

.global

L Fprop‘LOOPS’ = diagrams_(QCD‘LOOPS’,{glu,glu},empty,QQ,pp,‘LOOPS’,

‘OnePI_’+‘NoTadpoles_’+‘Symmetrize_’+‘TopologiesOnly_’);

Print +f +s;

.end

Time = 0.00 sec Generated terms = 46

Fprop3 Terms in output = 46

Bytes used = 17788

Fprop3 =

+ 1/4*topo_(1)*node_(1,1,-Q1)*node_(2,1,-Q2)*node_(3,g,Q1,-p1,-p2)*

node_(4,g,Q2,p1,-p3)*node_(5,g,p2,-p4,-p5)*node_(6,g,p3,p4,-p6)*node_(7,

g,p5,-p7,-p8)*node_(8,g,p6,p7,p8)

+ ...

+ 1/2*topo_(10)*node_(1,1,-Q1)*node_(2,1,-Q2)*node_(3,g,-p1,-p2,-p3)*

node_(4,g,p1,-p4,-p5)*node_(5,g,Q1,p2,-p6)*node_(6,g,Q2,p4,p6)*node_(7,

g^2,p3,p5)

+ ...

+ 1/4*topo_(28)*node_(1,1,-Q1)*node_(2,1,-Q2)*node_(3,g,Q1,-p1,-p2)*
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node_(4,g,Q2,-p3,-p4)*node_(5,g^2,p1,p3)*node_(6,g^2,p2,p4)

+ ...

+ 1/2*topo_(44)*node_(1,1,-Q1)*node_(2,1,-Q2)*node_(3,g,Q1,-p1,-p2)*

node_(4,g,Q2,p1,-p3)*node_(5,g^4,p2,p3)

+ 1/4*topo_(45)*node_(1,1,-Q1)*node_(2,1,-Q2)*node_(3,g^2,-p1,-p2)*

node_(4,g^2,Q1,p1,-p3,-p4)*node_(5,g^2,Q2,p2,p3,p4)

+ ...

;

With the quarks and the ghosts there are 202 diagrams. One can see in topo (44) that we have
a two-loop propagator, indicated by node (5,...). In topo (10) and topo (45) we see a single one-
loop propagator. In topo (28) we see the diagram with two one-loop propagators. In we omit the
TopologiesOnly option, we will obtain the full diagrams with the same topo indicators. A few of
those diagrams are:

- topo_(28)*node_(1,1,glu(-Q1))*node_(2,1,glu(-Q2))*node_(3,g,qua(-p1),

QUA(-p2),glu(Q1))*node_(4,g,qua(-p4),QUA(-p3),glu(Q2))*node_(5,g^2,qua(

p3),QUA(p1))*node_(6,g^2,qua(p2),QUA(p4))

- topo_(28)*node_(1,1,glu(-Q1))*node_(2,1,glu(-Q2))*node_(3,g,gho(-p1),

GHO(-p2),glu(Q1))*node_(4,g,gho(-p4),GHO(-p3),glu(Q2))*node_(5,g^2,gho(

p3),GHO(p1))*node_(6,g^2,gho(p2),GHO(p4))

+ 1/2*topo_(28)*node_(1,1,glu(-Q1))*node_(2,1,glu(-Q2))*node_(3,g,glu(

Q1),glu(-p1),glu(-p2))*node_(4,g,glu(Q2),glu(-p3),glu(-p4))*node_(5,g^2,

glu(p1),glu(p3))*node_(6,g^2,glu(p2),glu(p4))

In version 4.3 there existed also the topologies and the phi functions to just generate topologies.
This was before a complete implementation was made. For backward compatibility we have kept
these functions, but in the future they may become obsolete.

For people who have programs that rely on the topologies function we give here nevertheless
the syntax and a few examples

Vectors Q1,Q2,p1,...,p8;

Set QQ:Q1,Q2;

Set PP:p1,...,p8;

#define LOOPS "2"

Local F = topologies_(‘LOOPS’,2,{3,},QQ,PP);

Print +f +s;

.end

F =

+ node_(0,-Q1)*node_(1,-Q2)*node_(2,Q1,-p1,-p2)*node_(3,Q2,p1,-p3)*

node_(4,p2,-p4,-p5)*node_(5,p3,p4,p5)

+ node_(0,-Q1)*node_(1,-Q2)*node_(2,Q1,-p1,-p2)*node_(3,p1,-p3,-p4)*

node_(4,p2,p3,-p5)*node_(5,Q2,p4,p5)

;

Here the second parameter indicates the number of external legs, the third parameter is a set that
tells, in this case, that 3-point vertices are allowed, QQ is the set of external momenta and PP is
the set of internal momenta. The function node is a built-in function to indicate the vertices.

If one would like to allow more types of vertices one may change the third parameter:
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Vectors Q1,Q2,p1,...,p8;

Set QQ:Q1,Q2;

Set PP:p1,...,p8;

#define LOOPS "2"

Local F = topologies_(‘LOOPS’,2,{3,4},QQ,PP);

Print +f +s;

.end

F =

+ node_(0,-Q1)*node_(1,-Q2)*node_(2,Q1,Q2,-p1,-p2)*node_(3,p1,p2,-p3,p3

)

+ node_(0,-Q1)*node_(1,-Q2)*node_(2,Q1,-p1,-p2)*node_(3,Q2,p1,-p3)*

node_(4,p2,p3,-p4,p4)

+ node_(0,-Q1)*node_(1,-Q2)*node_(2,Q1,-p1,-p2)*node_(3,Q2,p1,-p3)*

node_(4,p2,-p4,-p5)*node_(5,p3,p4,p5)

+ node_(0,-Q1)*node_(1,-Q2)*node_(2,Q1,-p1,-p2)*node_(3,Q2,-p3,-p4)*

node_(4,p1,p2,p3,p4)

+ node_(0,-Q1)*node_(1,-Q2)*node_(2,Q1,-p1,-p2)*node_(3,p1,-p3,-p4)*

node_(4,Q2,p2,p3,p4)

+ node_(0,-Q1)*node_(1,-Q2)*node_(2,Q1,-p1,-p2)*node_(3,p1,-p3,-p4)*

node_(4,p2,p3,-p5)*node_(5,Q2,p4,p5)

+ node_(0,-Q1)*node_(1,-Q2)*node_(2,Q1,-p1,-p2,-p3)*node_(3,Q2,p1,p2,p3

)

+ node_(0,-Q1)*node_(1,-Q2)*node_(2,-p1,-p2,-p3)*node_(3,Q2,p1,-p4)*

node_(4,Q1,p2,p3,p4)

+ node_(0,-Q1)*node_(1,-Q2)*node_(2,-p1,-p2,-p3)*node_(3,p1,p2,-p4)*

node_(4,Q1,Q2,p3,p4)

;

and suddenly there are 9 topologies.
In the above configuration the program sees the external lines as different. If there is however

a symmetry between the two external lines of a propagator-like diagram (as is the case with boson
propagators) one can indicate this by putting a minus sign in front of the number 2:

Vectors Q1,Q2,p1,...,p8;

Set QQ:Q1,Q2;

Set PP:p1,...,p8;

#define LOOPS "2"

Local F = topologies_(‘LOOPS’,-2,{3,4},QQ,PP);

Print +f +s;

.end

F =

+ node_(0,-Q1)*node_(1,-Q2)*node_(2,Q1,Q2,-p1,-p2)*node_(3,p1,p2,-p3,p3

)

+ node_(0,-Q1)*node_(1,-Q2)*node_(2,Q1,-p1,-p2)*node_(3,Q2,p1,-p3)*

node_(4,p2,p3,-p4,p4)

+ node_(0,-Q1)*node_(1,-Q2)*node_(2,Q1,-p1,-p2)*node_(3,Q2,p1,-p3)*

node_(4,p2,-p4,-p5)*node_(5,p3,p4,p5)
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+ node_(0,-Q1)*node_(1,-Q2)*node_(2,Q1,-p1,-p2)*node_(3,Q2,-p3,-p4)*

node_(4,p1,p2,p3,p4)

+ node_(0,-Q1)*node_(1,-Q2)*node_(2,Q1,-p1,-p2)*node_(3,Q2,-p3,-p4)*

node_(4,p1,p3,-p5)*node_(5,p2,p4,p5)

+ node_(0,-Q1)*node_(1,-Q2)*node_(2,Q1,-p1,-p2)*node_(3,p1,-p3,-p4)*

node_(4,Q2,p2,p3,p4)

+ node_(0,-Q1)*node_(1,-Q2)*node_(2,Q1,-p1,-p2,-p3)*node_(3,Q2,p1,p2,p3

)

+ node_(0,-Q1)*node_(1,-Q2)*node_(2,-p1,-p2,-p3)*node_(3,p1,p2,-p4)*

node_(4,Q1,Q2,p3,p4)

;

Now the program assumes this symmetry and one notices only 8 topologies remaining.
In the case of the topologies function there are no combinatorics factors. This will of course

be different with the future function diagrams .
That this function is very fast can be seen when one generates all topologies of a 6-loop propa-

gator with only 3-point vertices:

Vectors Q1,Q2,p1,...,p17;

Set QQ:Q1,Q2;

Set PP:p1,...,p17;

#define LOOPS "6"

Local F = topologies_(‘LOOPS’,-2,{3,},QQ,PP);

.end

Time = 0.85 sec Generated terms = 2793

F Terms in output = 2793

Bytes used = 2010976

This is very much faster than the program that is used most widely.
The program to do this with the diagrams function is:

#define LOOPS "6"

Model PHI3;

Particle phi,+1;

Vertex phi,phi,phi:g;

EndModel;

Vector Q1,Q2,p1,...,p{3*‘LOOPS’};

Set QQ:Q1,Q2;

Set pp:p1,...,p{3*‘LOOPS’};

Set empty:;

Local F = diagrams_(PHI3,{phi,phi},empty,QQ,pp,‘LOOPS’,

‘OnePI_’+‘NoTadpoles_’+‘Symmetrize_’+‘TopologiesOnly_’);

.end

Time = 0.85 sec Generated terms = 2793

F Terms in output = 2793

Bytes used = 2010976

and without the symmetry:
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#define LOOPS "6"

Model PHI3;

Particle phi,+1;

Vertex phi,phi,phi:g;

EndModel;

Vector Q1,Q2,p1,...,p{3*‘LOOPS’};

Set QQ:Q1,Q2;

Set pp:p1,...,p{3*‘LOOPS’};

Set empty:;

Local F = diagrams_(PHI3,{phi,phi},empty,QQ,pp,‘LOOPS’,

‘OnePI_’+‘NoTadpoles_’+‘TopologiesOnly_’);

.end

Time = 0.15 sec Generated terms = 4999

F Terms in output = 4999

Bytes used = 3599296
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Chapter 22

Floating point arithmetic

Starting with version 5.0, FORM is equiped with arbitrary precision floating point arithmetic.
The low level routines are handled by the GMP and MPFR libraries, which are available on most
systems and if missing can be easily picked up from the internet. This chapter describes the
commands, functions, and behaviour of FORM’s floating point sytem.

22.1 Initializing and closing the floating point system

Before any floating-point operations can be performed, FORM must activate the floating point
system and set the working precision. This initialization allocates the internal data structures used
by the GMP and MPFR libraries. The system remains active until the end of the program, or until
it is explicitly closed. The two statements that control these operations are:

#StartFloat This instruction initializes the floating point system and allocates the necessary
internal arrays. It takes either one or two arguments:

#StartFloat <precision> [,MZV=<maximumweight>]

The first argument is mandatory and specifies the desired precision. It must be a positive
integer followed by either a b (for precision in bits) or d (for precision in decimal digits).
FORM will round to at least this precision. The second argument is optional and only needed
when working with multiple zeta values (MZVs) or Euler sums. It specifies the maximum
weight that will be used. The evaluation of the sums requires a number of auxiliary arrays
that depend on this weight. The default weight is zero.

#EndFloat This instruction releases all arrays allocated for the floating point system. Note
that if one would like to change the precision during a run, this is now possible with a new
#StartFloat instruction.

Example programs that illustrate the use of these statements and the functionality of FORM’s
floating point system are given below.

22.2 Conversion between rational and floating point coefficients

A term in an expression can have a rational or floating point coefficient. The following statements
convert between the two.
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ToFloat Converts rational coefficients to floating point numbers in the precision specified by
#StartFloat. From this point on, the coefficient will be floating point.

ToRational Attempts to convert floating point coefficients to rational numbers. To this end it
uses continued fractions as in

x → n0 +
1

n1 +
1

n2+
1

n3+···

,

with x a floating point number. The algorithm keeps track of the remaining precision and if
1/ni is close to this precision it truncates the sequence at ni−1. After that it works out the
corresponding fraction. It could be that x cannot be expressed as a fraction within the given
precision. This can usually be seen by that the fractions are ‘rather wild’, or that the result
changes when the precision is increased. This statement can also be abbreviated as ToRat.

The above statements operate on ground level coefficient only. To convert numbers inside a
function argument, one must use the Argument environment. For example:

CFunction f;

#StartFloat 10d

Local F = 0.1666666666*f(0.1428571429);

ToRat;

Print "<1> %t";

Argument f;

ToRat;

EndArgument;

Print "<2> %t";

.end

<1> + 1/6*f(1.428571429e-01)

<2> + 1/6*f(1/7)

The argument environment may be nested. Similarly, the statements Evaluate, StrictRounding
and Chop act at the ground level. To have them act on function argument, one uses the Argument
environment. These statements are explained further below.

22.3 Evaluation of functions and symbols

Before version 5.0, FORM already reserved function names for many common mathematical func-
tions. These functions can now be evaluated numerically using:

Evaluate This statement evaluates the mathematical functions and or symbols numerically:

Evaluate [function(s)],[symbol(s)];

where the argument specifies the function(s) and/or symbol(s) to evaluate. More than one
function and/or symbol may be listed. If this statement is used without arguments, all floating
point functions and symbols that FORM knows will be evaluated. Currently, the full list of
functions that can be evaluated numerically reads
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sqrt_, ln_, eexp_, li2_, gamma_, agm_,

sin_, cos_, tan_, asin_, acos_, atan_, atan2_,

sinh_, cosh_, tanh_, asinh_, acosh_, atanh_,

mzv_, euler_, mzvhalf_,

where the functions on the last line denote the multiple zeta values, Euler sums and harmonic
polylogarithms of argument 1/2 respectively. The list of symbols/constants that can be
evaluated is

pi_, ee_, em_,

where ee denotes the basis of the natural logarithm and em the Euler-Mascheroni constant.

In addition, the functions lin , hpl and mpl are reserved function names, but currently
have no numerical evaluation.

22.4 Rounding behaviour

StrictRounding This statement rounds floating point numbers to a given precision:

StrictRounding [<precision>];

where <precision> is an optional argument that specifies the rounding precision in either
digits or bits, using the same syntax as #startfloat. If omitted, the default precision is
used.

Internally, the GMP and MPFR libraries may use extra precision beyond that set by #startfloat.
As a result, terms that print the same may still differ slightly due to this extra precision and
therefore fail to merge. For example:

#startfloat 6d

CFunction f;

Local F = f(1.0)+f(1.0000001);

Print;

.sort

results in F = f(1.0e+00)+f(1.0e+00);. Although it may appear that the terms should
merge, the extra precision maintained by GMP prevents this, even though it is not displayed
at 6 digits of precision. Using the strictrounding statement, one can force rounding to exactly
6 digits. Indeed:

Argument f;

strictrounding;

Argument;

Print;

.end

results in F = 2*f(1.0e+00);. Notice that rounding in bits may produce unexpected results
when viewed in decimal digits. For example, the decimal number 1.1e-4 cannot be represented
exactly in binary. Its binary representation, up to 20 bits of precision, is 1.1100110101011111101∗
2−14. When rounded to 5 bits, this becomes 1.1101 ∗ 2−14, which in decimal digits appears
as 1.10626220703125e-04.
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Chop This statement removes floating point numbers that are smaller in absolute magnitude than
a specified threshold. It takes one argument:

Chop <delta>;

All floating point numbers with absolute value less than <delta> are replaced by 0. Terms
with no floating point coefficient are left untouched. The threshold <delta> can be a floating
point number, integer, rational number, or power. Because statements in FORM act term
by term, it is often important to sort before invoking the chop statement. Otherwise, terms
might be removed individually, while after sorting and combining, their combined floating
point coefficient could exceed the specified chop threshold.

Format floatprecision This instruction controls how many digits are displayed when printing
floating point numbers. It only affects output formatting and does not influence the internal
precision or accuracy of computations. It can be used in three ways: in case of

Format floatprecision;

FORM prints floats with the number of digits specified by the current #startfloat instruc-
tion. With

Format floatprecision <precision>;

FORM prints the number of digits specified by <precision>. The syntax is the same as for
the precision in #startfloat. If the requested precision exceeds the precision specified by
#startfloat, only the available digits are printed. Finally, with

Format floatprecision off;

the floating point numbers are printed in raw internal format, see also section 22.6.

22.5 Examples

The following example shows some work with Multiple Zeta Values (MZV’s):

#StartFloat 500b, MZV=15

L F1 =

-mzv_(8,1,1,5)

+29056868/39414375*mzv_(2)^6*mzv_(3)

-47576/40425*mzv_(2)^5*mzv_(5)

-163291/18375*mzv_(2)^4*mzv_(7)

-4/105*mzv_(2)^3*mzv_(3)^3

-450797/11025*mzv_(2)^3*mzv_(9)

+7/5*mzv_(2)^2*mzv_(3)^2*mzv_(5)

+16/25*mzv_(2)^2*mzv_(3)*mzv_(5,3)

+454049/1400*mzv_(2)^2*mzv_(11)

-16/25*mzv_(2)^2*mzv_(5,3,3)

+3*mzv_(2)*mzv_(3)^2*mzv_(7)

+61/14*mzv_(2)*mzv_(3)*mzv_(5)^2
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+2/7*mzv_(2)*mzv_(3)*mzv_(7,3)

+2172853/420*mzv_(2)*mzv_(13)

-2/7*mzv_(2)*mzv_(7,3,3)

+1/7*mzv_(2)*mzv_(5,5,3)

-33/4*mzv_(3)^2*mzv_(9)

-133/6*mzv_(3)*mzv_(5)*mzv_(7)

-25/9*mzv_(3)*mzv_(9,3)

-244/105*mzv_(5)^3

-359/105*mzv_(5)*mzv_(7,3)

+3/10*mzv_(7)*mzv_(5,3)

+89/18*mzv_(9,3,3)

+569/105*mzv_(7,3,5);

L F2 = mzv_(15);

Evaluate mzv_;

Print +f;

.sort

F1 =

9.1234206877960755900164875575406726239325002222490534540605137258846994\

916348297032751308227224952419629422497720599224543719959652966613231560\

6913926e+03;

F2 =

1.0000305882363070204935517285106450625876279487068581775065699328933322\

671563422795730723343470175484943669684442492832530297757588781904321794\

40477e+00;

Skip F1,F2;

L X = F1/F2;

Torational;

Print +f;

.end

X =

229903169/25200;

0.08 sec out of 0.09 sec

In the first module, #startfloat initializes the floating point system with 500 bits of precision and
a maximum weight for the MZVs and Euler sums of 15. The mzv functions are then evaluated
with the Evaluate statement. In the second module we divide the numbers and convert the result
to a rational. It is a good idea to try this with various precisions to see whether this is stable.
With 60 bits the final answer would be

145537942402475031/15952490572234;

while at 150 bits we have already the same answer as with 500 bits. The fraction that is obtained
by this program can be proven to be correct.
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22.6 Raw form

Internally, floating point numbers are represented by the function float , i.e. float (prec, size,

exp, limbs). The integer arguments encode the internal representation of the floating point
number as in the GMP library:

prec The precision of the mantissa in limbs.

size The number of limbs currently in use.

exp The exponent, determining the location of the implied radix point.

limbs The limbs packed as the numerator of a FORM rational.

In a normalized term containing float , the rational coefficient must be either 1/1 or −1/1, where
the sign of the term is absorbed into the rational coefficient. Furthermore, the float is pro-
tected from the pattern matcher and from statements that act on functions – such as Transform,
Argument, Normalize etc. The following program illustrates this:

CFunction f;

#StartFloat 10d

Local F = 1.23456789 + f(1,2);

Identify f?(?a) = f(10);

Print "<1> %t";

.sort

<1> + 1.23456789e+00

<1> + f(10)

#EndFloat

Normalize;

Print "<2> %t";

.sort

<2> + float_(2,3,1,420101683733788795657820481376616399786)

<2> + 10*f(1)

#StartFloat 5d

Print "<3> %t";

.end

<3> + 1.2346e+00

<3> + 10*f(1)

As shown, the id-statement does not effect the float function. Here we also see the use of the
preprocessor statement #EndFloat which closes the floating point system. After this statement,
the float function becomes a regular function. Its protected status, however, persists so that
id-statements or statements like Normalize still do not modify it.
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#system, 41, 46, 245
#terminate, 47

269



#toexternal, 34, 42, 47, 245, 246
#undefine, 48
#usedictionary, 206
#write, 25, 28, 29, 38, 47–49, 246
$-variable, 34, 48, 61, 86, 104, 110, 126, 132, 145,

163, 243
%, 48
32 bits, 23, 92, 101, 145, 166, 215, 229–231
64 bits, 23, 92, 101, 145, 166, 215, 229–231

aborted, 87
abrackets, 68
abs , 158
acos , 175
acosh , 175
active, 113, 114, 126, 137, 154
active expressions, 97, 105
addargs, 152
addition, 23
addto, 202, 204
Adler

Mark, 201
agm , 175
algebra

Dirac, 154
algorithms, 216
all, 99
also, 68, 100
alternative, 76
ambiguity, 60
and, 23
antibracket, 69, 75, 108, 128, 176
antibrackets, 68
anticommute, 217
antiputinside, 69
antisymmetric, 95, 134, 160, 161
antisymmetrize, 69
append, 129
apply, 69, 201, 203, 205
argexplode, 70
argimplode, 70
argument, 71, 83, 85, 104, 108, 114, 124, 125,

138
argument field, 62, 144, 157
argument field wildcard, 59
argument statement, 138
arguments of functions, 227
arithmetic, 22, 23, 61

arithmetic operations, 181
array, 60
asin , 175
asinh , 175
atan2 , 175
atan , 175
atanh , 175
audit, 203
auto, 71
autodeclare, 12, 71

backquote, 20, 40
backslash, 26, 48
bernoulli , 158
binom , 158
binomials, 131
Bjorken & Drell metric, 214
bottleneck, 238
braces, 11, 177
bracket, 46, 72, 97, 128, 130, 137, 160, 174, 176

curly, 22, 60
bracket index, 97, 177
bracketindexsize, 177, 229
brackets, 72, 75, 92, 227

curly, 11
indexing, 73
keep, 106

bucket, 147, 239
buffer

large, 225, 234
procedure, 26
small, 224, 234

bug, 19

C, 23, 29, 48, 94, 127
C-interface, 249
cache, 234, 240
caches, 232
caching, 227
calculator, 22, 27, 31

preprocessor, 11
caveat, 15
chainin, 74
chainout, 74
channel

external, 245
checkpoints, 56
Chinese remainder theorem, 162, 170
Chisholm, 149, 215, 216
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chisholm, 74
clock, 53
CMODULE , 21
coeff , 6
coefficient, 88, 101, 114, 124, 125
coefficients

integer, 108
collect, 32, 75, 178
colon, 9
color package, 135
combinatorics, 159, 160
comma, 11, 23
command shell, 245
commentary, 20, 28, 38
commentchar, 229
Common subexpression elimination, 185
communication, 238

external, 245
two way, 245

commuteinset, 76
commuting, 8, 58, 71, 74, 77–79, 95, 98, 144, 146,

157
compilation, 131
compile, 201
compiler, 20
complex, 5, 8, 95, 142, 220
complicated, 10
complication, 76, 224
compress, 77, 203, 204
compressed, 200
compresssize, 230
condition, 100
conflicts, 12
conjg , 158
conjugate

complex, 5
conjugation, 220

complex, 5
constindex, 92, 230
content , 158
continuationlines, 230
contract, 77, 215
contracted indices, 133
contraction, 219
contractions

trace, 81
conv2to3, 117
copyspectator, 251

cos , 175
cosh , 175
count, 101, 142
count , 159
CPU time, 240
crash, 56
crashed FORM program, 57
create, 203, 204
createspectator, 251
CSE, 185
curly bracket, 22
cycle, 151
cycle symmetric, 95
cyclesymmetric, 134
cyclesymmetrize, 79
Cygwin, 1

d , 159
daemon, 43, 247
dangerous, 221
database, 200
DATE , 21
dd , 159
deallocatetable, 79
debugging, 126, 186
declarations, 52
decode, 151
dedup, 151
default dimension, 141
define, 230
definitions, 52
delayed substitution, 29, 63
delete, 80
delta

Kronecker, 7, 16, 77, 219, 221
kronecker, 159

delta , 159
deltap , 159
den , 6
denom , 159
denominators, 4, 80
deterministic, 242
dictionaries, 206
dimension, 6, 7, 103

default, 13, 81, 141
Dirac, 154, 163, 164
Dirac algebra, 214
discard, 81, 142
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disk to disk sort, 227
disorder, 82, 98
distrib , 136, 160, 218
div , 121, 160, 188
division, 23
do loop, 30, 33
dollar, 91

printing, 64
dotchar, 4, 94, 230
dotproducts, 4, 230
double quote, 48
doublefortran, 93, 209
drop, 83, 107, 112
dropargs, 152
dum , 108, 160
dummy, 132, 141, 157
dummy arguments, 96
dummy , 161
dummyindices , 10
dummyten , 161
dynamical loading, 92

e , 161
edit, 20
ee , 6, 265
eexp , 175
efficient, 224
Einstein, 7, 9, 16
elements, 136
else, 84, 100
else statement, 84
elseif, 84, 100
elseif statement, 84
em , 6, 265
embed, 249
emptyspectator, 251
encode, 150
end of module specifications, 52
endargument, 71, 83, 85
endif, 84, 85, 100
endif statement, 84, 85
endinexpression, 85
endinside, 104
endrepeat, 86, 132
endterm, 86, 146
endwhile, 87, 155
enter, 203
environment, 22, 237

argument, 71, 85
inside, 86
repeat, 86
term, 86, 138, 146
while, 87, 155

environment variables, 2
error, 19

runtime, 62
error stream, 247
euler , 175
even , 10
exclamation, 11
executable statements, 52
execution, 52, 136
exists, 36
exit, 87
exp , 161
explode, 151
exponent, 23
exponent operator, 94
expression, 4, 34, 48, 83, 96, 101, 163
extension

.sav, 135
small, 225

exteuclidean , 161
extform.pdf, 245
extform.ps, 245
extra symbols, 45, 80, 87, 181, 211
extrasymbol , 162
extrasymbols, 49
EXTRASYMBOLS , 21
extrasymbols , 6

fac , 163
factarg, 88, 119, 121, 122
factdollar, 121
factorial, 23, 163, 165
factorin , 163
factorize, 121
fall-through, 46
farg , 163
file, 49

close, 28
disk, 96
hide, 97, 154
include, 46
input, 1, 203
intermediate, 52
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log, 2, 127, 128
new, 203
program, 229
saved, 107
setup, 3, 229
sort, 234, 240
storage, 53, 80, 96, 107
store, 135, 232
temporary, 3

filename, 251
filepatches, 227, 234, 235
files

.sav, 15
fill, 79, 90, 92, 129, 144, 200, 202–204
fillexpression, 92, 128, 173
filter, 245
findloop, 101, 135
firstbracket , 163
firstterm , 163
fixed index, 92
fixed , 10
fixindex, 60, 92, 221
flexibility, 221
float, 93
float , 163
floating point, 93
floatprecision, 93
fold, 37
folders, 246
foldname, 37
folds, 46
form.set, 3, 229
FORM PIPES, 249
format, 52, 64, 93, 127, 129

C, 94
doublefortran, 93
float, 93
floatprecision, 93
fortran, 93
fortran90, 94
maple, 94
mathematica, 94
normal, 94
nospaces, 93
optimize, 93
quadfortran, 93
quadruplefortran, 93
rational, 93

reduce, 94
spaces, 93

format string, 48, 127
FORMPATH, 3, 26, 37, 49, 204
FORMSETUP, 3
FORMTMP, 3
FORMTMPSORT, 3
Fortran, 230
fortran, 4, 49, 50, 93, 208
fortran90, 94
fractions, 111
function, 113, 157

abs , 158
acos , 175
acosh , 175
agm , 175
asin , 175
asinh , 175
atan2 , 175
atan , 175
atanh , 175
bernoulli , 158
binom , 158
commuting, 8
conjg , 158
content , 158
cos , 175
cosh , 175
count , 159
d , 159
dd , 159
delta , 159
deltap , 159
denom , 159
distrib , 136, 160
div , 121, 160, 188
dum , 160
dummy , 161
dummyten , 161
e , 161
euler , 175
exp , 161, 175
exteuclidean , 161
extrasymbol , 162
fac , 163
factorin , 163
farg , 163
firstbracket , 163
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firstterm , 163
float , 163
g5 , 163
g6 , 164
g7 , 164
g , 164
gamma , 175
gcd , 121, 164, 188
gi , 164
hpl , 175
id , 164
integer , 165
inverse , 121, 165
invfac , 165
li2 , 175
lin , 175
ln , 175
makerational , 165
match , 166
max , 166
maxpowerof , 166
min , 166
minpowerof , 166
mod2 , 167
mod , 166
moebius , 167
mpl , 175
mul , 121, 167
mzv , 175
mzvhalf , 175
nargs , 167
node , 167
non-commuting, 8
nterms , 168
numfactors , 168
partitions , 168
pattern , 169
perm , 169
poly , 169
polyadd , 169
polydiv , 160, 169
polygcd , 164, 169, 199
polyintfac , 169
polymul , 169
polynorm , 169
polyrem , 169, 171
polysub , 169
prime , 170

putfirst , 170
random , 43, 171
ranperm , 171
regular, 157
rem , 121, 171, 188
replace , 153, 171
reverse , 172
root , 172
setfun , 172
sig , 172
sign , 172
sin , 175
sinh , 175
sizeof , 172
sqrt , 175
sum , 173
sump , 173
table , 173
tan , 175
tanh , 175
tbl , 173
term , 174
termsin , 174
termsinbracket , 174
theta , 174
thetap , 174
tofloat , 174
topologies , 174
torat , 174

function arguments, 88
functionlevels, 230
functions, 8, 95

commuting, 71, 74
noncommuting, 71, 98

funpowers, 96

g5 , 163, 214
g6 , 164
g7 , 164
g , 164, 214
Gailly

Jean-loup, 201
gamma algebra, 75
gamma matrices, 8, 75, 149, 163, 164, 214
gamma , 175
garbage collection, 225
GCD, 163
gcd , 121, 164, 188
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gi , 164, 215
global, 96, 107
GNU, 248
goto, 97, 106
Grace, 40
greater than, 24
greedy optimizations, 185
group theory, 135
guarantee, 112
gzip, 121, 204

harmonic polylogarithm, 137, 152
harmonic polylogarithms, 70
harmonic sum, 137, 140
harmonic sums, 70, 152
hide, 97, 105, 113, 117, 130, 154, 232, 233, 241
hide file, 97
hide files, 57
hidesize, 230
hierarchy, 102
high energy physics, 214
highfirst, 233
Horner scheme, 184, 186
hpl , 175

i , 6, 7, 215
id, 58, 68, 82, 96, 98, 100, 108, 112, 124, 135,

137, 141, 172
id statement, 82
id , 164
identify, 98, 100
idnew, 100
idold, 100
if, 84, 85, 100, 135, 142, 155

count, 142
if statement, 84, 85
ifmatch, 98, 102, 106
ifnomatch, 103
imaginary, 5, 8, 95, 142, 220
implode, 151
improvement factor, 239
inactive, 109
incdir, 230, 232
index, 6, 7, 71, 92, 103

bracket, 177
contracted, 133
dummy, 141, 157
main, 201
table, 157

trace line, 149
index loop, 101, 133
index tree, 177
index , 10
indices, 7, 71, 81, 103

dummy, 13, 81, 132
fixed, 8
lower, 77, 219
numeric, 8
renumber, 13
summable, 8, 219
upper, 77, 219

individual expressions, 127
inexpression, 85, 103
infinite loop, 133, 155
input, 241

standard, 34
inside, 86, 104
insidefirst, 105, 230
installation, 229
instance, 29
int , 9
integer , 165
intohide, 114
inverse , 121, 165
invfac , 165
isdefined, 36
isfactorized, 36
islyndon, 151
isnumerical, 36

jumpratio, 230

Karlsruhe, 238
keep, 106
keep brackets, 106, 177
kill, 43, 247
KILL signal, 42, 43, 247, 248
killall, 43, 247
Knuth, 226
Kronecker, 7, 16, 77, 219, 221
kronecker, 159

label, 97, 98, 106
large buffer, 225, 234
largepatches, 234, 235
largesize, 234, 235
last, 150
LCM, 163

275



legal, 19
less than, 24
Levi-Civita, 77, 219
Levi-Civita tensor, 161
li2 , 175
library, 40

making a, 40
lin , 175
linebreaks, 127
linefeed, 26, 48, 127
LINUX, 240, 249
listed loop, 31
lists, 13
ln , 175
load, 107, 135, 201, 203, 204
load balancing, 240, 244
loading dynamically, 92
local, 96, 106, 107
lock, 242
log, 2, 127, 128
logical, 35
loop, 131

index, 133
infinite, 133
listed, 31
numerical, 31
while, 131

loops
infinite, 155

loopsize, 134
lower, 77
lowfirst, 233
Lyndon word, 151, 152

macro, 30
makeinteger, 108, 178
makerational , 165
many, 98, 101, 108
maple, 94
master, 147, 223, 238, 239
match, 101
match , 166
mathematica, 94
matrices

gamma, 8, 219
matrix

unit, 154
matrix like, 144

max , 166
maxnumbersize, 231
maxpowerof, 36
maxpowerof , 166
maxtermsize, 76, 231, 232
maxwildcards, 231
MCTS, 184
memory, 52

total amount of, 19
merge, 136
metric, 92, 109, 219, 220
min , 166
mincer, 106
minpowerof, 36
minpowerof , 166
mixed statements, 52
mod2 , 167
mod , 166
mode

single term, 127
module, 20, 52, 57
module instruction, 52
module number, 57
ModuleOption, 104
moduleoption, 53, 54, 66, 109

inparallel, 109
local, 110, 243
maximum, 110, 243
minimum, 110, 243
noparallel, 109
notinparallel, 110
parallel, 109
polyfun, 110
processbucketsize, 110, 241
sum, 110, 243

modulus, 111, 121
moebius , 167
Monte Carlo tree search, 184
mountains, 223
MPI, 238, 241
mpirun, 241
mpl , 175
MS-DOS, 41
mul , 121, 167
mulargs, 152
multi, 98, 101, 112
Multiple Zeta Value, 152
multiple zeta value, 137
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multiple zeta values, 70
multipleof, 101
multiplication, 23
multiply, 112, 137

left, 112
right, 112

MZV, 137, 152
MZV data mine, 152
mzv , 175
mzvhalf , 175

NAME , 21, 44
names, 4

definition, 4
length, 5

nargs , 167
ndrop, 112
neg0 , 10
neg , 10
nested, 46, 133, 146
nesting, 20
newline, 48, 246
nfunction, 113
nhide, 97, 113
nintohide, 114
non-commuting, 8
noncommuting, 58, 71, 95, 98, 113, 116, 144, 146,

157
nondeterministic, 66
normal, 94
normalization, 142
normalize, 108, 114, 178
nospaces, 93
nospacesinnumbers, 231
nosymmetrize, 215
notation

ambiguous, 8
nprint, 115
nskip, 115, 137
ntable, 116, 144
ntensor, 116, 146
nterms , 168
num , 6
number of FORM words, 172
number of terms, 174
number , 10
numerical loop, 31
numerical output, 208

numerical processing, 181
numfactors , 168
numstorecaches, 231, 232
nunhide, 117
nwrite, 117

allnames, 117
allwarnings, 117
highfirst, 117
lowfirst, 118
names, 117
powerfirst, 118
setup, 117
shortstatistics, 117
shortstats, 117
statistics, 117
stats, 117
warnings, 117

nwritestatistics, 231
nwritethreadstatistics, 231

obsolete, 54, 96, 105, 117, 129, 155
occurrence order, 184
odd , 10
off, 56, 96, 117, 118, 129, 155, 204

allnames, 118
allwarnings, 118
backtrace, 118
checkpoint, 118
compress, 118
finalstats, 118
flint, 118
highfirst, 118
humanstats, 118
insidefirst, 118
lowfirst, 118
names, 118
nospacesinnumbers, 119
oldfactarg, 119
parallel, 119, 241
powerfirst, 119
processstats, 119
propercount, 119
properorder, 119
setup, 119
shortstatistics, 119
shortstats, 119
sortreallocate, 119
statistics, 119
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stats, 119
threadloadbalancing, 119
threads, 120, 240
threadstats, 120
totalsize, 120
warnings, 120
wtimestats, 120

old notation, 20
OLDNUMEXTRASYMBOLS , 21
oldorder, 232
on, 56, 96, 117, 129, 155, 204, 233

allnames, 120
allwarnings, 120
backtrace, 120
checkpoint, 120
compress, 120
fewerstatistics, 121
fewerstats, 121
finalstats, 121
flint, 121
highfirst, 121
humanstats, 121
insidefirst, 121
lowfirst, 121
names, 122
nospacesinnumbers, 122
oldfactarg, 122
parallel, 122, 241
powerfirst, 122
processstats, 122, 242
propercount, 122
properorder, 122
setup, 122
shortstatistics, 122
shortstats, 122
sortreallocate, 123
statistics, 123
stats, 123
threadloadbalancing, 123
threads, 123, 240
threadstats, 123, 240
totalsize, 123
warnings, 123
wtimestats, 123

once, 98, 101, 124
only, 98, 101, 124
open, 201, 203, 204
opteron, 239

optimization buffer, 182
optimize, 93
OPTIMMAXVAR , 21
optimmaxvar , 181, 182
OPTIMMINVAR , 21
optimminvar , 181, 182
OPTIMSCHEME , 21
optimscheme , 184
OPTIMVALUE , 21
optimvalue , 184
option

disorder, 82
select, 11

or, 23
order of terms, 242
ordered set, 136
output

standard, 34
output channel, 48
output specifications, 52
overflow, 92
overwrite, 129

package
color, 135

parallel, 109, 129
parallel execution, 110
parallel processing, 66
parentheses, 176, 232
ParFORM, 66, 104, 115, 129, 238, 241, 252
partial fractioning, 130
partitions , 168
patch, 225, 234
PATH, 43, 247
path, 25, 26, 37, 39, 230, 232, 234

search, 247
pattern, 24, 58, 98
pattern matcher, 101
pattern matching, 11, 58
pattern , 169
pentium, 239
percentage, 76
period, 5, 52
perm , 169
permutation, 143
permutations, 131, 132
permute, 151
pi , 6
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PID, 21, 250
PID , 21
pipe, 39, 249
PIPE1 , 249
PIPE2 , 249
pipelined job, 43
PIPES , 249
poly , 169
polyadd , 169
polydiv , 160, 169
polyfun, 54, 110, 124, 178, 225
polygcd , 164, 169, 199
polyintfac , 169
polylogarithms

harmonic, 70
polymul , 169
polynorm , 169
polyratfun, 80, 110, 121, 125, 252
polyrem , 169, 171
polysub , 169
pophide, 126, 130
pos0 , 10
pos , 10
POSIX, 238
pow, 94
power series, 55
powerfirst, 233
pre-opened external channels, 249
precedence, 229
prefactdollar, 121
premature, 133
preprocessor, 20
preprocessor variable, 29, 41

numeric, 22
preprocessor variables, 20, 131, 229
prime , 170
print, 115, 126, 128, 241, 242

%T, 127
%W, 127
%$, 127
%%, 127
%t, 127
%w, 127

print[], 128
printf, 127
printing, 93
printtable, 128
private, 241

procedure, 26, 33, 40
procedureextension, 232
process

external, 245
processbucketsize, 110, 129, 232, 241
processor, 110
prompt, 35, 41
propagator, 219
propercount, 129
properorder, 98
protocol

lowlevel, 249
pushhide, 126, 130
putfirst , 170
putinside, 130

quadfortran, 93, 209
quadruplefortran, 93
question mark, 58
quote, 20, 40

random, 171
random , 43, 171
range, 150, 207, 211
ranperm , 171
ratio, 130
rational, 93
rational polynomials, 252
rcyclesymmetrize, 131
reading, 37
real, 5, 8, 95, 142, 211, 220
recovery, 56
recovery option, 57
recursively, 90
redefine, 31, 131
REDUCE, 219
reduce, 94
rem , 121, 171, 188
remainder, 23, 138
removespectator, 251
renumber, 13, 132
repeat, 86, 132
repeat environment, 132
replace, 150
replace , 60, 153, 164, 171
replaceloop, 101, 133
replacement, 171
representation

textual, 63
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resettimeonclear, 53, 232
restriction

power, 5
restrictions, 18
reverse, 151
reverse cycle symmetric, 95
reverse cycle symmetrize, 131
reverse , 172
root of unity, 140, 142
root , 172
rounding, 165
run, 57
run a script, 57
running FORM, 1
runtime error, 62

save, 135
save files, 57
saved file, 107
scalar objects, 59
Schoonschip, 58, 130, 146, 164, 173, 219
scratch files, 57
ScratchSize, 52
scratchsize, 97, 232
screen, 127
script, 43
select, 98, 101, 135
selectargs, 152
semicolon, 38, 49, 100
set, 60, 98, 136, 138, 139

ambiguous, 60
corresponding element, 61
dynamical, 23, 60
inside, 11
mixed, 136
ordered, 136
outside, 11

set of indices, 60
Set of symbols, 60
setexitflag, 136
setfun , 172
setrandom, 171
sets, 9

array, 60
implicitly declared, 11
named, 12

settings, 118
setup, 227, 229

bracketindexsize, 229
commentchar, 229
compresssize, 230
constindex, 230
continuationlines, 230
define, 230
dotchar, 230
filepatches, 235
functionlevels, 230
hidesize, 230
incdir, 230, 232
insidefirst, 230
jumpratio, 230
largepatches, 235
largesize, 235
maxnumbersize, 231
maxtermsize, 231
maxwildcards, 231
nospacesinnumbers, 231
numstorecaches, 231
nwritestatistics, 231
nwritethreadstatistics, 231
oldorder, 232
parentheses, 232
path, 230, 232
procedureEetension, 232
processbucketsize, 232
resettimeonclear, 232
scratchsize, 232
sizestorecache, 232
smallextension, 235
smallsize, 235
sortiosize, 235
sorttype, 233
tempdir, 233
tempsortdir, 233
termsinsmall, 235
threadbucketsize, 233
threadloadbalancing, 233
threads, 233
threadscratchoutsize, 233
threadscratchsize, 233
totalsize, 234
workspace, 234
wtimestats, 234

setup file, 4
shell, 43, 57, 245, 247
short integer, 92
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shorthand, 102, 133
SHOWINPUT , 21, 44
shuffle, 109, 140
sig , 172
SIGKILL signal, 43, 247
sign , 172
signal, 239
sin , 175
single term mode, 127
sinh , 175
sizeof , 172
sizestorecache, 232
skip, 115, 137
skipped expressions, 97
slow, 177
small buffer, 224, 234
small extension, 225
smallextension, 225, 234, 235
smallsize, 234, 235
sort, 137, 138, 146

final stage, 178
sort file, 227
sorting, 179, 224
sortiosize, 227, 234, 235
sorttype, 233
spaces, 93
sparse, 79, 144, 200, 202
specifications, 52
spin line, 149, 214
spinline, 75
splitarg, 88, 114, 138, 139
splitfirstarg, 138
splitlastarg, 139
sqrt , 175
square root, 23
stack overflow, 90
stages in the sorting, 227
standard error, 43
standard input, 34
standard output, 34
statements, 52
stderr, 43, 247
storage file, 80, 96
store file, 135
strict, 144
string, 49
strong typing, 12
stub, 205

stub function, 201
student, 223
stuffle, 137
subexpressions, 235
substaidentify, 164
substitution

delayed, 29, 63
substitutions, 58
subtraction, 23
SUBVERSION , 21
sum, 10, 141, 173
sum , 173
summation

Einstein, 7, 9, 16
sump , 173
sums

harmonic, 70
superpatch, 234
symbol, 142
symbol , 10
symbols, 5, 71, 81, 181

built in, 6
symmetric, 95

anti, 134
cycle, 95, 134
reverse cycle, 95

symmetrization, 143
symmetrize, 131, 143, 215

reverse cycle, 131
SYSTEMERROR , 21, 47

tab, 48
table, 90, 92, 116, 128, 136, 144, 157, 200

check, 144
commuting, 78
matrix like, 144, 145
noncommuting, 116
onefill, 145
relax, 144
sparse, 79, 144, 145
strict, 145
zerofill, 145

table elements, 200
table index, 157
table indices, 144
table , 173
tablebase, 145, 146, 173, 200
tables, 9
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tan , 175
tanh , 175
tbl , 173, 200, 201, 205
tempdir, 233
temporary files, 227
temporary variables, 181
tempsortdir, 233
tensor, 116, 136, 146, 157

commuting, 79
Levi-Civita, 77, 161, 219
metric, 219
noncommuting, 116

tensors, 9
commuting, 72
noncommuting, 72, 98

term, 86, 138, 146
term , 174
terminate, 33
termination, 56, 136

premature, 133
terms, 4
termsin, 37
termsin , 174
termsinbracket , 174
termsinsmall, 234, 235
testuse, 146, 201, 203, 205
TFORM, 66, 104, 115, 147, 238, 239, 252
theta , 174
thetap , 174
thread, 66, 110
threadbucketsize, 147, 233, 239
threadloadbalancing, 233, 240
threads, 233
threadscratchoutsize, 233
threadscratchsize, 233
time, 57
time , 21
timer , 21
tofloat , 174
tointegralnotation, 151
tolyndon, 152
topologies , 167, 174
ToPolynomial, 182
topolynomial, 87
torat , 174
tospectator, 251
tosumnotation, 151
totalsize, 2, 123, 234

totensor, 148
!set, 148
!vector, 148
functions, 148
nosquare, 148

tovector, 148
trace, 214
trace contractions, 81
trace line, 149
trace4, 149, 215

contract, 149
nocontract, 149
nosymmetrize, 149
notrick, 149

tracen, 149, 215
traces, 8
traffic jam, 227
Transform, 150
transform

addargs, 152
cycle, 151
decode, 151
dedup, 151
dropargs, 152
encode, 150
explode, 151
implode, 151
islyndon, 151
mulargs, 152
permute, 151
replace, 150
reverse, 151
selectargs, 152
tointegralnotation, 151
tolyndon, 152
tosumnotation, 151

translation, 206
tree

balanced, 145
index, 177

tree of losers, 226
tree sort, 224
tricks, 215
tryreplace, 153
twolog, 23

underscore, 4, 5
underscore character, 94
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unhide, 97, 117, 154
unit matrix, 154, 215
unittrace, 154
UNIX, 1, 39, 41, 58, 234, 238, 248
unpleasant, 105
upper, 77
use, 201, 203, 205

variable
dollar, 91
preprocessor, 29, 41, 44, 48, 63

variables
algebraic, 62
dollar, 4, 5, 15, 62
lists, 13
preprocessor, 4, 5, 33, 62, 131
total number of, 18

vector, 154
vectors, 6, 71
VERSION , 21, 44
vertices, 134
veto, 66
virtual bracket, 160

warning, 76, 90
warnings, 207
water, 223
weight, 101
while, 87, 155
wildcard, 58, 64, 98, 157

$-variable, 61
argument field, 59, 157
function, 58
index, 58
symbol, 59
vector, 59

wildcarding, 10
wildcards, 144
Windows, 41
word, 206
worker, 239
workers, 238
workspace, 234
write, 155

allnames, 156
allwarnings, 156
highfirst, 156
lowfirst, 156
names, 156

powerfirst, 156
setup, 156
shortstatistics, 156
shortstats, 156
statistics, 156
stats, 156
warnings, 156

wtimestats, 234

Zen, 223
zero

dimension, 103
zlib, 201
zstd, 121
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